Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaff in cells

Abstract

IN many cell types an increase in cytosolic calcium is the main signal for the exocytotic release of stored secretory components such as hormones and neurotransmitters. The site of action of calcium in exocytosis is not known, neither are the participating molecules1,2. In the case of the intracellular membrane fusions that occur during transport through early stages of the secretory pathway, several cytosolic and peripheral membrane proteins are necessary3–6. Permeabilized cells have been useful in understanding the requirements for calcium and nucleotides in regulated exocytosis7,8 and under certain conditions there is leakage of soluble protein components and run-down of the exocytotic response9–14. This system can be used to identify the soluble proteins involved in exocytosis, one candidate in chromaffin cells being annexin II (calpactin)9. Here we use this assay to identify two other cytosolic protein factors that regulate exocytosis in permeabilized adrenal chromaffin cells, which we term Exol and Exo2. Exol from brain cytosol resolves on electrophoresis in SDS–polyacrylamide gels as a group of polypeptides of relative molecular mass ˜30,000 and shares sequence homology with the 14–3–3 family of proteins. The ability of Exol to reactivate exocytosis is potentiated by protein kinase C activation and there-fore Exol may influence the protein kinase C-mediated control of Ca2+-dependent exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Almers, W. A. Rev. Physiol. 52, 607–624 (1990).

    Article  CAS  Google Scholar 

  2. Burgoyne, R. D. Biochim. biophys. Acta. 1071, 174–202 (1991).

    Article  CAS  Google Scholar 

  3. Balch, W. E. J. biol. Chem. 264, 16965–16968 (1989).

    CAS  PubMed  Google Scholar 

  4. Clary, D. O., Griff, I. C. & Rothman, J. E. Cell 61, 709–721 (1990).

    Article  CAS  Google Scholar 

  5. Wattenberg, B. W., Hiebsch, R. R., LeCureux, L. W. & White, M. P. J. Cell Biol. 110, 947–954 (1990).

    Article  CAS  Google Scholar 

  6. Wilson, D. W. et al. Nature 339, 355–359 (1989).

    Article  CAS  ADS  Google Scholar 

  7. Gomperts, B. D. A. Rev. Physiol 52, 591–606 (1990).

    Article  CAS  Google Scholar 

  8. Knight, D. E., von Grafenstein, H. & Athayde, C. M. Trends Neurosci. 12, 451–458 (1989).

    Article  CAS  Google Scholar 

  9. Ali, S. M., Geisow, M. J. & Burgoyne, R. D. Nature 340, 313–315 (1989).

    Article  CAS  ADS  Google Scholar 

  10. Holz, R. W., Bittner, M. A., Peppers, S. C., Senter, R. A. & Eberhard, D. A. J. biol. Chem. 264, 5412–5419 (1989).

    CAS  PubMed  Google Scholar 

  11. Howell, T. W., Kramer, I. M. & Gomperts, B. D. Cell Signal. 1, 157–163 (1989).

    Article  CAS  Google Scholar 

  12. Koffer, A. & Gomperts, B. D. J. Cell Sci. 94, 585–591 (1989).

    CAS  PubMed  Google Scholar 

  13. Martin, T. F. J. & Walent, J. H. J. biol. Chem. 264, 10299–10308 (1989).

    CAS  PubMed  Google Scholar 

  14. Sarafian, T., Aunis, D. & Bader, M.-F. J. biol. Chem. 262, 16671–16676 (1987).

    CAS  PubMed  Google Scholar 

  15. Dunn, L. A. & Holz, R. W. J. biol. Chem. 258, 4989–4993 (1983).

    CAS  PubMed  Google Scholar 

  16. Schafer, T., Karli, U. O., Gratwohl, E. K.-M., Schweizer, F. E. & Burger, M. M. J. Neurochem 49, 1696–1707 (1987).

    Article  Google Scholar 

  17. Drust, D. S. & Creutz, C. E. Nature 331, 88–91 (1988).

    Article  CAS  ADS  Google Scholar 

  18. Nakata, T., Sobue, K. & Hirokawa, N. J. Cell Biol. 110, 13–25 (1990).

    Article  CAS  Google Scholar 

  19. Ali, S. M., Geisow, M. J. & Burgoyne, R. D. Cell Signal. 2, 265–276 (1990).

    Article  CAS  Google Scholar 

  20. Burgoyne, R. D. & Morgan, A. Biochem. Soc. Trans. 18, 1111–1114 (1990).

    Article  Google Scholar 

  21. Wu, Y. N. & Wagner, P. D. FEBS Lett. 282, 197–199 (1991).

    Article  CAS  Google Scholar 

  22. Glenney, J. R., Tack, B. & Powell, M. A. J. Cell Biol. 104, 503–511 (1987).

    Article  CAS  Google Scholar 

  23. Burgoyne, R. D., Morgan, A. & O'Sullivan, A. J. FEBS Lett. 238, 151–155 (1988).

    Article  CAS  Google Scholar 

  24. Knight, D. E. & Baker, P. F. FEBS Lett. 160, 98–100 (1983).

    Article  CAS  Google Scholar 

  25. Pocotte, S. L. et al. Proc. natn. Acad. Sci. U.S.A 82, 930–934 (1985).

    Article  CAS  ADS  Google Scholar 

  26. Terbush, D. R. & Holz, R. W. J. biol. Chem. 261, 17099–17106 (1986).

    CAS  PubMed  Google Scholar 

  27. Schweizer, F. E. et al. Nature 339, 709–712 (1989).

    Article  CAS  ADS  Google Scholar 

  28. Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Proc. natn. Acad. Sci. U.S.A. 85, 7852–7856 (1988).

    Article  CAS  ADS  Google Scholar 

  29. Boston, P. F., Jackson, P. & Thompson, R. J. J. Neurochem. 38, 1475–1482 (1982).

    Article  CAS  Google Scholar 

  30. Ichimura, T. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7084–7088 (1988).

    Article  CAS  ADS  Google Scholar 

  31. Yamanuchi, T., Nakata, H. & Fujisawa, H. J. biol. Chem 256, 5404–5409 (1981).

    Google Scholar 

  32. Toker, A., Ellis, C. A., Sellers, L. A. & Aitken, A. Eur. J. Biochem. 191, 421–429 (1990).

    Article  CAS  Google Scholar 

  33. Aitken, A., Ellis, C. A., Harris, A., Sellars, L. A. & Toker, A. Nature 344, 594 (1990).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, A., Burgoyne, R. Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaff in cells. Nature 355, 833–836 (1992). https://doi.org/10.1038/355833a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355833a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing