Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells

Abstract

I N synapses, a rise in presynaptic intracellular calcium leads to secretory vesicle fusion in less than a millisecond, as indicated by the short delay from excitation to postsynaptic signal1–4. In non-synaptic secretory cells, studies at high time resolution have been limited by the lack of a detector as fast and sensitive as the postsynaptic membrane. Electrochemical methods may be sensitive enough to detect catecholamines released from single vesicles5,6. Here, we show that under voltage-clamp conditions, stochastically occurring signals can be recorded from adrenal chromaffin cells using a carbon-fibre electrode as an electrochemical detector. These signals obey statistics characteristic for quantal release; however, in contrast to neuronal transmitter release, secretion occurs with a significant delay after short step depolarizations. Furthermore, we identify a pedestal or 'foot' at the onset of unitary events which may represent the slow leak of catecholamine molecules out of a narrow 'fusion pore' before the pore dilates for complete exocytosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  2. Llinas, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 323–352 (1981).

    Article  CAS  Google Scholar 

  3. Augustine, G. J., Charlton, M. P. & Smith, S. J. J. Physiol., Lond. 367, 163–181 (1985).

    Article  CAS  Google Scholar 

  4. Edwards, F. A., Konnerth, A. & Sakmann, B. J. Physiol., Lond. 430, 213–249 (1990).

    Article  CAS  Google Scholar 

  5. Leszczyszyn, D. J. et al. J. biol. Chem. 265, 14736–14737 (1990).

    CAS  PubMed  Google Scholar 

  6. Leszczyszyn, D. J. et al. J. Neurochem. 56, 1855–1863 (1991).

    Article  CAS  Google Scholar 

  7. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol., Lond. 331, 599–635 (1982).

    Article  CAS  Google Scholar 

  8. Neher, E. & Marty, A. Proc. natn. Acad. Sci. U.S.A. 79, 6712–6716 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Duchen, M. R., Millar, J. & Biscoe, T. J. J. Physiol., Lond. 426, 5 (1991).

    Google Scholar 

  10. Marsden, C. A. et al. Neuroscience 25, 389–400 (1988).

    Article  CAS  Google Scholar 

  11. Lindau, M. & Neher, E. Pflügers Arch. 411, 137–146 (1988).

    Article  CAS  Google Scholar 

  12. Baur, J. E., Kristensen, E. W., May, L. J., Wiedemann, D. J. & Wightman, R. W. Analyt. Chem. 60, 1268–1272 (1988).

    Article  CAS  Google Scholar 

  13. Phillips, J. H. Neuroscience 7, 1595–1609 (1982).

    Article  CAS  Google Scholar 

  14. Katz, B. & Miledi, R. J. Physiol., Lond. 181, 656–670 (1965).

    Article  CAS  Google Scholar 

  15. Horn, R. & Marty, A. J. gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

  16. Aimers, W. A. Rev. Physiol. 52, 607–624 (1990).

    Article  Google Scholar 

  17. Thomas, L. et al. Science 242, 1050–1053 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Parnas, H., Dudel, J. & Parnas, I. Pflügers Arch. 406, 121–130 (1986).

    Article  CAS  Google Scholar 

  19. Simon, S. M. & Llinas, R. Biophys. J. 48, 485–498 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Fogelson, A. L. & Zucker, R. S. Biophys. J. 48, 1003–1017 (1985).

    Article  CAS  Google Scholar 

  21. Sala, F. & Hernandez-Cruz, A. Biophys. J. 57, 313–324 (1990).

    Article  CAS  Google Scholar 

  22. Alvarez De Toledo, G. & Fernandez, J. M. J. gen. Physiol. 95, 397–409 (1990).

    Article  CAS  Google Scholar 

  23. Marty, A. & Neher, E. J. Physiol., Lond. 367, 117–141 (1985).

    Article  CAS  Google Scholar 

  24. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  25. Armstrong-James, M. & Millar, J. J. Neurosci. Meth. 1, 279–287 (1979).

    Article  CAS  Google Scholar 

  26. Crank, J. The Mathematics of Diffusion 2nd edn (Oxford University Press, Oxford, 1975).

    MATH  Google Scholar 

  27. Jackson, J. D. Classical Electrodynamics 2nd edn (Wiley, New York, 1975).

    MATH  Google Scholar 

  28. Wightman, R. M. et al. Proc. natn. Acad. Sci. U.S.A. 88, 10754–10758 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, R., von Rüden, L. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992). https://doi.org/10.1038/356060a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356060a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing