Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of ferroelectricity in perovskite oxides

Abstract

FERROELECTRIC materials are characterized by a switchable macroscopic polarization. Most technologically important ferroelectrics are oxides with a perovskite structure. The origin of their ferroelectric behaviour is unclear, however, and there is incomplete understanding of why similar, but chemically different, perovskites should display very different ferroelectric behaviour. The great sensitivity of ferroelectrics to chemistry, defects, electrical boundary conditions and pressure arises from a delicate balance between long-range Coulomb forces (which favour the ferroelectric state) and short-range repulsions (which favour the nonpolar cubic structure). To model the transition accurately, total-energy techniques are required which incorporate the effects of charge distortion and covalency. Here I report results of electronic-structure calculations on two classic examples of ferroelectric perovskites, BaTiO3 and PbTiO3, and demonstrate that hybridization between the titanium 3d states and the oxygen 2p states is essential for ferroelectricity. The different ferroelectric phase behaviour of the two materials is also clear: in PbTiO3, the lead and oxygen states hybridize, leading to a large strain that stabilizes the tetragonal phase, whereas in BaTiO3 the interaction between barium and oxygen is completely ionic, favouring a rhombohedral structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  2. Shirane, G., Pepinsky, R. & Frazer, B. C. Acta crystallogr. 9, 131–140 (1956).

    Article  CAS  Google Scholar 

  3. Harada, J., Pedersen, T. & Barnea, Z. Acta crystallogr. A26, 608–612 (1970).

    Article  CAS  Google Scholar 

  4. Salje, E. K. H. Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge Univ. Press, 1990).

    Google Scholar 

  5. Comes, R., Lambert, M. & Guinier, A. Acta crystallogr. A26, 244–254 (1970).

    Article  CAS  Google Scholar 

  6. Wei, S.-H. & Krakauer, H. Phys. Rev. Lett. 55, 1200–1203 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Hedin, L. & Lundqvist, B. I. J. Phys. C4, 2064–2083 (1971).

    ADS  Google Scholar 

  8. Cohen, R. E. & Krakauer, H. Phys. Rev. B42, 6416–6423 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Decker, D. L. & Zhao, Y. X. Phys. Rev. B39, 2432–2438 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Ramirez, R., Lapen̄a, M. F. & Gonzalo, J. A. Phys. Rev. B42, 2604–2606 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Cohen, R. E., Pickett, W. E. & Krakauer, H. Phys. Rev. Lett. 64, 2575–2578 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Cohen, R. E. in High Pressure Research: Application to Earth and Planetary Science (eds Syono, Y. & Manghnani, M. H.) (Terra Scientific, Tokyo, 1992).

    Google Scholar 

  13. Fontana, M. D., Idrissi, H., Kugel, G. E. & Wojcik, K. J. Phys.: Condens. Matter 3, 8695–8705 (1991).

    ADS  CAS  Google Scholar 

  14. Kohn, W. & Vashishta, P. in Theory of the Inhomogeneous Electron Gas (eds Lundqvist, S. & March, N. H.) (Plenum, New York, 1983).

    Google Scholar 

  15. Slater, J. C. Phys. Rev. 78, 748–761 (1950).

    Article  ADS  CAS  Google Scholar 

  16. Shannon, R. D. & Prewitt, C. T. Acta crystallogr. B25, 925–946 (1969).

    Article  CAS  Google Scholar 

  17. Boyer, L. L., Mehl, M. J., Flocken, J. W. & Hardy, J. R. J. appl. Phys. 24, Suppl. 24–2, 204–205 (1985).

    Article  Google Scholar 

  18. Marais, S., Heine, V., Nex, C. & Salje, E. Phys. Rev. Lett. 66, 2480–2483 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Pickett, W. E., Cohen, R. E. & Krakauer, H. Phys. Rev. Lett. 67, 228–231) (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992). https://doi.org/10.1038/358136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing