Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-templated assembly and electrode attachment of a conducting silver wire

Abstract

Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular1 to submicrometre2 quantum dots and on the electrical transport in carbon nanotubes3,4,5 have confirmed theoretical predictions6,7,8 of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures9,10 might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition11 and mechanical12,13,14,15,16 properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 µm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of a silver wire connecting two gold electrodes.
Figure 2: Fluorescence image of the DNA bridge.
Figure 3: Atomic force microscopy images (Dimension 3000, Digital Instruments) of a silver wire connecting two gold electrodes 12 µm apart.
Figure 4: Experimentally observed IV curves.

Similar content being viewed by others

References

  1. Porath, D. & Milloh, O. Single electron tunneling and level spectroscopy of isolated C60molecules. J. Appl. Phys. 81, 1–4 (1997).

    Article  Google Scholar 

  2. Meirav, U. & Foxman, E. B. Single-electron phenomena in semiconductors. Semiconductor Sci. Technol. 11, 255–284 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Langer, L. et al. Quantum transport in a multiwalled carbon nanotube. Phys. Rev. Lett. 76, 479–482 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  6. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B., Lee, P. & Webb, R.) 173 (Elsevier, Amsterdam, (1991)).

    Book  Google Scholar 

  7. Grabert, H. & Devoret, M. (eds) Single Charge Tunneling (Plenum, New York, (1992)).

    Book  Google Scholar 

  8. Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 64, 849–858 (1992).

    Article  ADS  Google Scholar 

  9. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, (1995)).

    Book  Google Scholar 

  10. Atwood, J. L. et al. (eds) Comprehensive Supramolecular Chemistry (Pergamon, Oxford, (1996)).

    Google Scholar 

  11. Watson, J. D. et al. Molecular Biology of the Gene 4th edn (Benjamin Cummings, Menlo Park, (1987)).

    Google Scholar 

  12. Austin, R. H. et al. Stretch genes. Phys. Today 50, 32–38 (1997).

    Article  CAS  Google Scholar 

  13. Bensimon, D. et al. Stretching DNA with a receding meniscus: Experiments and models. Phys. Rev. Lett. 74, 4754–4757 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Bensimon, A. et al. Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Wirtz, D. Direct measurement of the transport properties of a single DNA molecule. Phys. Rev. Lett. 75, 2436–2439 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Zimmerman, R. M. & Cox, E. C. DNA stretching on functionalized gold surfaces. Nucleic Acids Res. 22, 492–497 (1994).

    Article  Google Scholar 

  17. Schwartz, D. C. & Koval, M. Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature 338, 520–522 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Barton, J. K. in Bioinorganic Chemistry (eds Bertini, I. et al.) ch. 8 (University Science Books, Mill Valley, (1994)).

    Google Scholar 

  19. Spiro, T. G. (ed.) Nucleic Acid–Metal Ion Interactions (Wiley Interscience, New York, (1980)).

    Google Scholar 

  20. Marzilli, L. G., Kistenmacher, T. J. & Rossi, M. J. Am. Chem. Soc. 99, 2797–2798 (1977).

    Google Scholar 

  21. Eichorn, G. L. (ed.) Inorganic Biochemistry Vol. 2, ch. 33–34 (Elsevier, Amsterdam, (1973)).

    Google Scholar 

  22. Holgate, C. S. et al. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. Histochem. Cytochem. 31, 938–944 (1983).

    Article  CAS  Google Scholar 

  23. Birrell, G. B. et al. Silver-enhanced colloidal gold as a cell surface marker for photoelectron microscopy. J. Histochem. Cytochem. 34, 339–345 (1986).

    Article  CAS  Google Scholar 

  24. Hall, B. D., Holmlin, R. E. & Barton, J. K. Oxidative DNA damage through long-range electron transfer. Nature 382, 731–735 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Arkin, M. R. et al. Rates of DNA-mediated electron transfer between metallointercalators. Science 273, 475–480 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Lewis, F. D. et al. Distance-dependent electron transfer in DNA hairpins. Science 277, 673–676 (1997).

    Article  CAS  Google Scholar 

  27. Mirkin, C. A. et al. ADNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Alivisatos, A. P. et al. Organisation of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Coffer, J. L. et al. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl. Phys. Lett. 69, 3851–3853 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Haran, A. Admon, W. Kaplan and S. Lipson for discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erez Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, E., Eichen, Y., Sivan, U. et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998). https://doi.org/10.1038/35826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35826

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing