Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases

Abstract

THE mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region1. These shc gene products (Shc) are transforming when overexpressed in fibroblasts1. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors1, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated She proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene3,4. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells3,4. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC 12 cells. These results suggest that She tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pelicci, G. et al. Cell 70, 93–104 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. McGlade, J., Cheng, A., Pelicci, G., Pelicci, P. G. & Pawson, T. Proc. natn Acad. Sci. U.S.A. 89, 8869–8873 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Clark, S. G., Stern, M. J. & Horvitz, H. R. Nature 356, 340–344 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lowenstein, E. J. et al. Cell 70, 431–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Hempstead, B. L., Martin-Zanca, D., Kaplan, D. R., Parada, L. F. & Chao, M. V. Nature 350, 678–683 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V. & Parada, L. F. Science 252, 554–558 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Klein, R., Jing, S., Nanfuri, V., O'Rourke, E. & Barbacid, M. Cell 65, 189–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Hagag, N., Halegoua, S. & Viola, M. Nature 319, 680–682 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Szeberenyi, J., Cai, H. & Cooper, G. M. Molec. cell. Blol. 10, 5324–5332 (1990).

    Article  CAS  Google Scholar 

  10. Thomas, S. M., DeMarco, M., D'Arcangelo, G., Halegoua, S. & Brugge, J. S. Cell 68, 1031–1040 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Wood, K. W., Sarnecki, C., Roberts, T. M. & Blenis, J. Cell 68, 1041–1050 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Feig, L. A. & Cooper, G. M. Molec. cell. Biol 8, 3235–3243 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Martegani, E. et al. EMBO J 11, 2151–2157 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simon, M. A., Bowtell, D. D. L., Dodson, G. S., Laverty, T. R. & Rubin, G. M. Cell 67, 701–716 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Bonfini, L., Karlovich, C. A., Dasgupta, C. & Banerjee, U. Science 255, 603–606 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Moran, M. F., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Molec. cell. Biol 11, 1804–1812 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, X. & Pawson, T. Molec. cell. Biol. 11, 2511–2716 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, K., Hurley, T. R. & Sefton, B. M. Oncogene 5, 921–923 (1990).

    CAS  PubMed  Google Scholar 

  20. McGlade, C. J. et al. Molec. cell. Biol. 12, 991–997 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Honegger, A. M. et al. Cell 51, 199–209 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, A. D. & Rosman, G. J. Biotechniques 7, 980–990 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller, A. D., Tauber, D. R. & Buttimore, C. Somatic Cell molec. Genet. 12, 175–183 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozakis-Adcock, M., McGlade, J., Mbamalu, G. et al. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360, 689–692 (1992). https://doi.org/10.1038/360689a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360689a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing