Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle

Abstract

Numerical modelling of mantle convection in a spherical shell with an endothermic phase change at 670 km depth reveals an inherently three-dimensional flow pattern, containing cylindrical plumes and linear sheets which behave differently in their ability to penetrate the phase change. The dynamics are dominated by accumulation of downwelling cold material above 670 km depth, resulting in frequent avalanches of upper-mantle material into the lower mantle. This process generates long-wavelength lateral heterogeneity, helping to resolve the contradiction between seismic tomographic observations and expectations from mantle convection simulations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Christensen, U. R. & Yuen, D. A. J. geophys. Res. 90, 10291–10300 (1985).

    Article  ADS  Google Scholar 

  2. Liu, M., Yuen, D. A., Zhao, W. & Honda, S. Science 252, 1836–1839 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Zhao, W., Yuen, D. A. & Honda, S. Phys. Earth planet. Inter. 72, 185–210 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Machetel, P. & Weber, P. Nature 350, 55–57 (1991).

    Article  ADS  Google Scholar 

  5. Peltier, W. R. & Solheim, L. P. Geophys. Res. Lett. 19, 432–324 (1992).

    Google Scholar 

  6. Wyllie, P. J. Rev. Geophys. 26, 370–404 (1988).

    Article  ADS  Google Scholar 

  7. Glatzmaier, G. A., Schubert, G. & Bercovici, D. Nature 347, 274–277 (1990).

    Article  ADS  Google Scholar 

  8. Bercovici, D., Schubert, G. & Glatzmaier, G. A. Science 244, 950–955 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Schubert, G., Bercovici, D. & Glatzmaier, G. A. J. geophys. Res. 95, 14105–14129 (1990).

    Article  ADS  Google Scholar 

  10. Nakanishi, I., & Anderson, D. L. J. geophys. Res. 88, 10267–10283 (1983).

    Article  ADS  Google Scholar 

  11. Tanimoto, T. J. Phys. Earth 38, 493–509 (1990).

    Article  Google Scholar 

  12. Tanimoto, T. Geophys. J. Int. 100, 327–336 (1990).

    Article  ADS  Google Scholar 

  13. Su, W. & Dziewonski, A. M. Nature 352, 121–126 (1991).

    Article  ADS  Google Scholar 

  14. Su, W., Woodward, R. L. & Dziewonski, A. M. Nature 360, 149–152 (1992).

    Article  ADS  Google Scholar 

  15. Su, W.-J. & Dziewonski, A. M. Phys. Earth planet. Inter. 74, 29–54 (1992).

    Article  ADS  Google Scholar 

  16. Jarvis, G. T. & Peltier, W. R. in Mantle Convection: Plate Tectonics and Global Dynamics (ed. Peltier, W. R.) 479–594 (Gordon and Breach, New York, 1989).

    Google Scholar 

  17. Glatzmaier, G. A. Geophys. astrophys. Fluid Dyn. 43, 223–264 (1988).

    Article  ADS  Google Scholar 

  18. Honda, S., Yuen, D. A., Balachandar, S. & Reuteler, D. Science (in the press).

  19. Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  20. Shearer, P. M. & Masters, T. G. Nature 355, 791–796 (1992).

    Article  ADS  Google Scholar 

  21. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  22. Osako, M. & Ito, E. Geophys. Res. Lett. 18, 239–242 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Anderson, D. L. Phys. Earth planet. Inter. 45, 307–323 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Ito, E., Akaogi,, M. Topor, L. & Navrotsky, A. Science 249, 1275–1278 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Anderson, O. L., Oda, H. & Isaak, D. Geophys. Res. Lett. 19, 1987–1990 (1992).

    Article  ADS  Google Scholar 

  26. Schubert, G. Ann. Rev. Earth Planet. Sci. 7, 289–342 (1979).

    Article  ADS  Google Scholar 

  27. Schubert, G., Stevenson, D. J. & Cassen, P. J. geophys. Res. 85, 2531–2538 (1980).

    Article  ADS  Google Scholar 

  28. Davies, G. F. & Richards, M. A. J. Geol. 100, 151–206 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Sharpe, H. N. & Peltier, W. R. Geophys. Res. Lett. 5, 737–740 (1978).

    Article  ADS  Google Scholar 

  30. Houseman, G. Nature 332, 346–349 (1988).

    Article  ADS  Google Scholar 

  31. Travis, B., Weinstein, S. & Olson, P. Geophys. Res. Lett. 17, 243–246 (1990).

    Article  ADS  Google Scholar 

  32. Christensen, U. & Yuen, D. Geophys. Res. Lett. 15, 597–600 (1988).

    Article  ADS  Google Scholar 

  33. Busse, F. H. in Mantle Convection: Plate Tectonics and Global Dynamics (ed. Peltier, W. R.) 23–95 (Gordon and Breach, New York, 1989).

    Google Scholar 

  34. Turcotte, D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems 279–285 (Wiley, New York, 1982).

    Google Scholar 

  35. Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Phys. Earth planet. Inter. 59, 294–328 (1990).

    Article  ADS  Google Scholar 

  36. Creager, K. C. & Jordan, T. H. J. geophys. Res. 91, 3573–3589 (1986).

    Article  ADS  Google Scholar 

  37. Vidale, J. E. & Garcia-Gonzales, D. Geophys. Res. Lett. 15, 369–372 (1988).

    Article  ADS  Google Scholar 

  38. Zhou, H. W. & Anderson, D. L. Proc. natn. Acad. Sci. U.S.A. 86, 8602–8606 (1989).

    Article  ADS  CAS  Google Scholar 

  39. Zhou, H. W. & Clayton, R. W. J. geophys. Res. 95, 6829–6851 (1990).

    Article  ADS  Google Scholar 

  40. van der Hilst, R., Engdahl, R., Spakman, W. & Nolet, G. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  41. Fukao, T., Obayashi, M., Inoue, H., & Nenbau, M. J. geophys. Res. 97, 4809–4822 (1992).

    Article  ADS  Google Scholar 

  42. Christensen, U. R. & Yuen, D. A. J. geophys. Res. 89, 4389–4402 (1984).

    Article  ADS  CAS  Google Scholar 

  43. Solheim, L. P. & Peltier, W. R. J. geophys. Res. (in the press).

  44. Scrivner, C. & Anderson, D. L. Geophys. Res. Lett. 19, 1053–1056 (1992).

    Article  ADS  Google Scholar 

  45. Davies, G. F. J. geophys. Res. 93, 10451–10466 (1988).

    Article  ADS  Google Scholar 

  46. Gurnis, M. & Zhong, S. Geophys. Res. Lett. 18, 581–584 (1991).

    Article  ADS  Google Scholar 

  47. Gurnis, M. Nature 332, 695–699 (1988).

    Article  ADS  Google Scholar 

  48. Weinstein, S. A. Geophys. Res. Lett. 20, 101–104 (1993).

    Article  ADS  Google Scholar 

  49. Jordan, T. H., Puster, P., Glatzmaier, G. A. & Tackley, P. J. Nature (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tackley, P., Stevenson, D., Glatzmaier, G. et al. Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle. Nature 361, 699–704 (1993). https://doi.org/10.1038/361699a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361699a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing