Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A molecular photoionic AND gate based on fluorescent signalling

Abstract

MOLECULES that perform logic operations are prerequisites for molecular information processing and computation1–11. We12,13 and others14–16 have previously reported receptor molecules that can be considered to perform simple logic operations by coupling ionic bonding or more complex molecular-recognition processes with photonic (fluorescence) signals: in these systems, chemical binding (the 'input') results in a change in fluorescence intensity (the 'output') from the receptor. Here we describe a receptor (molecule (1) in Fig. 1) that operates as a logic device with two input channels: the fluorescence signal depends on whether the molecule binds hydrogen ions, sodium ions or both. The input/output characteristics of this molecular device correspond to those of an AND gate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carter, F. L., Siatkowski, R. E. & Wohltjen, H. (eds) Molecular Electronic Devices (Elsevier, Amsterdam, 1988).

  2. Lehn, J.- M. Angew, Chem. int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  3. Lehn, J.- M. Angew. Chem. int. Ed. Engl. 29, 1304–1319 (1990).

    Article  Google Scholar 

  4. Anelli, P. L. et al. J. Am chem. Soc. 114, 193–218 (1992).

    Article  CAS  Google Scholar 

  5. Bryce, M. et al. Chem. Brit. 27, 707–731 (1991).

    Google Scholar 

  6. Chambron, J. C., Heitz, V. & Sauvage, J.- P. J. chem. Soc. chem. Commun., 1131–1133 (1992).

  7. Wasielewski, M. R., O'Neil, M. P., Gosztola, D., Niemczyk, M. P. & Svec, W. A. Pure appl. Chem. 64, 1319–1325 (1992).

    Article  CAS  Google Scholar 

  8. Wild, U. P., Bernet, S., Kohler, B. & Renn, A. Pure appl. Chem. 64, 1335–1342 (1992).

    Article  CAS  Google Scholar 

  9. Simon, J., Engel, M. K. & Soulie, C. New J. Chem. 16, 287–293 (1992).

    CAS  Google Scholar 

  10. Ashton, P. R., Philp, D., Spencer, N. & Stoddart, J. F. J. Chem. Soc. chem. Commun., 1124–1128 (1992).

  11. Ashton, P. R., Johnston, M. R., Stoddart, J. F., Tolley, M. S. & Wheeler, J. W. J. Chem. Soc. chem. Commun., 1128–1131 (1992).

  12. de Silva, A. P., de Silva, S. A., Dissanayake, A. S. & Sandanayake, K. R. A. S. J. Chem. Soc. chem. Commun., 1056–1058 (1989).

  13. de Silva, A. P. & Rupasinghe, R. A. D. D. J. chem. Soc. chem. Commun., 1669–1670 (1985).

  14. Huston, M. E., Akkaya, E. U. & Czarnik, A. W. J. Am. chem. Soc. 111, 8735–8737 (1989).

    Article  CAS  Google Scholar 

  15. Hosseini, M. W., Blacker, A. J. & Lehn, J.- M. J. Am. chem. Soc. 112, 3896–3904 (1990).

    Article  CAS  Google Scholar 

  16. Van Arman, S. A. & Czarnik, A. W. Supramolec. Chem. 1, 99–101 (1993).

    Article  CAS  Google Scholar 

  17. Bissell, R. A. et al. Chem. Soc. Rev. 21, 187–195 (1992).

    Article  CAS  Google Scholar 

  18. de Silva, A. P. & Sandanayake, K. R. A. S. J. chem. Soc. chem. Commun. 1183–1185 (1989).

  19. Smith, J. W. in The Chemistry of the Amino Group (ed. Patai, S.) Ch. 4 (Interscience, London, 1968).

    Google Scholar 

  20. Izatt, R. M., Pawlak, K. Bradshaw, J. S. & Bruening, R. L. Chem. Rev. 91, 1721–2085 (1991).

    Article  CAS  Google Scholar 

  21. Orrit, M. & Bernard, J. Phys. Rev. Lett. 65, 2716–1719 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Basche, Th. & Moerner, W. E. Nature 355, 335–337 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Kugimiya, S. I., Lazrak, T., Blanchard-Desce, M. & Lehn, J.- M. J. chem. Soc. chem. Commun., 1179–1182 (1991).

  24. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Appl. Phys. Lett. 40, 178–180 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Binnig, G. & Rohrer, H. Angew. Chem. Int. Edn. Engl. 26, 606–614 (1987).

    Article  Google Scholar 

  26. Frommer, J. Angew. Chem. Int. Edn. Engl. 31, 1289–1328 (1992).

    Google Scholar 

  27. de Silva, A. P., Gunaratne, H. Q. N. & Sandanayake, K. R. A. S. Tetrahedron Lett. 31, 5193–5196 (1990).

    Article  Google Scholar 

  28. Hyde, E. M., Shaw, B. L. & Shepherd, I. J. chem. Soc. Dalton Trans. 1696–1705 (1978).

  29. Perera, K. S. D., thesis, Queen's Univ. of Belfast (1989).

  30. de Silva, A. P. & de Silva, S. A. J. chem. Soc. Commun., 1709–1710 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Silva, P., Gunaratne, N. & McCoy, C. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993). https://doi.org/10.1038/364042a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/364042a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing