Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation

Abstract

WHEN fullerenes1,2 are fragmented by laser irradiation, they lose C2 fragments and retain a closed carbon cage3. The detailed mechanism of this process remains unknown, although survival of the cage implies that annealing (rearrangement of the bonding) must play an important role3,4. Here we use ab initio quantum-chemical calculations to show that fullerene annealing happens more readily than fragmentation, and that both are intimately related. Our findings imply that the assumptions commonly made about fullerenes5—that they are composed of five- and six-membered rings of sp2 carbons— are not valid under high-energy conditions. In particular, the appearance of sp3 carbon and seven-membered rings is central in both the annealing and fragmentation processes. Our theoretical predictions imply that the high-energy processes of fullerene growth6–11 and coalescence12 are much richer than previously thought, and that their mechanisms may also involve structures containing sp3 carbon and seven-membered rings. Our results may aid in the design of experimental methods for controlling the nature of fullerene cages (for example, doping, opening and re-closing them).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

    ADS  CAS  Google Scholar 

  2. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  3. O'Brien, S. C., Heath, J. R., Curl, R. F. & Smalley, R. E. J. chem. Phys. 88, 220–230 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Curl, R. F. Phil. Trans. R. Soc. A343, 19–32 (1993).

    ADS  CAS  Google Scholar 

  5. Kroto, H. W. Nature 329, 529–531 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Kroto, H. W. & McKay, K. Nature 331, 328–331 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Smalley, R. E. Acct. Chem. Res. 25, 98–105 (1992).

    Article  CAS  Google Scholar 

  8. Heath, J. R. in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters (eds Hammond, G. S. & Kuck, V. J.) 1–27 (Am. chem. Soc. Symp. Ser. No. 481, Washington DC, 1991).

    Google Scholar 

  9. Helden, G. V., Gotts, N. G. & Bowers, M. T. Nature 363, 60–63 (1993).

    Article  ADS  Google Scholar 

  10. Hunter, J., Fye, J. & Jarrold, M. F. Science 260, 784–786 (1993).

    Article  ADS  CAS  Google Scholar 

  11. McElvany, S. W., Ross, M. M., Goroff, N. S. & Diederich, F. Science 259, 1594–1596 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Yeretzian, C., Hansen, K., Diederich, F. & Whetten, R. L. Nature 359, 44–47 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Dewar, M. S. & Thiel, W. J. Am. chem. Soc. 99, 4907–4917 (1977).

    Article  CAS  Google Scholar 

  14. Almlöf, J., Faegri, K. Jr & Korsell, K. J. comput. Chem. 3, 385–399 (1982).

    Article  Google Scholar 

  15. Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. Chem. Phys. Lett. 162, 165–169 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  17. Scuseria, G. E. J. chem. Phys. 97, 7528–7530 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Scuseria, G. E. in Buckminsterfullerenes (eds Billups, W. E. & Ciufolini, M. A.) 103–124 (VCH, New York, 1993).

    Google Scholar 

  19. Guo, T. et al. Science 257, 1661–1664 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Johnson, B. G., Gill, P. M. W. & Pople, J. A. J. chem. Phys. 98, 5612–5626 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Scuseria, G. E. Chem. Phys. Lett. 176, 423–427 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Scuseria, G. E. Chem. Phys. Lett. 180, 451–455 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Stone, A. J. & Wales, D. J. Chem. Phys. Lett. 128, 501–503 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Shang, B. L., Wang, C. Z., Ho, K. M., Xu, C. H., Chan, C. T. J. chem. Phys. 97, 5007–5011 (1992).

    Article  ADS  Google Scholar 

  25. Saito, R., Dresselhaus, G & Dresselhaus, M. S. Chem. Phys. Lett. 195, 537–542 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Iijima, S., Ichihashi & Ando, Y. Nature 356, 776–778 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murry, R., Strout, D., Odom, G. et al. Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature 366, 665–667 (1993). https://doi.org/10.1038/366665a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366665a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing