Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution

Abstract

THE potential for diverse applications of diamond1 has been enhanced by the discovery of the chemical vapour deposition process2,3 for film formation. The growth of hetero-epitaxial diamond films on silicon is a particularly attractive goal, but only polycrystalline films have so far been prepared in this way4. Because of the large lattice mismatch, thin intermediate layers (interlayers5) are formed between the diamond and silicon phases, which may contain crystalline SiC (refs 6, 7) or amorphous compounds (SiC, carbon8 and SiO2). An understanding of how diamond nucleates5,9–11, and the role of these interlayers, requires a detailed knowledge of the nature of carbon bonding (sp2 orsp3) at the interface. Here we report the use of transmission electron energy-loss spectroscopy (EELS) to obtain a map of sp2 and sp3 carbon at a spatial resolution of less than a nanometre across the silicon–diamond interface. We find that diamond nucleates on an amorphous carbon layer, with the transition from sp2to sp3 carbon occurring over less than one nanometre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, R. F. et al. Mater. Sci. Engng B1, 77–104 (1988).

    Article  Google Scholar 

  2. Matsumoto, S., Sato, Y., Kamo, M. & Setaka, N. Jap. J. appl. Phys. 21, L183–L185 (1982).

    Article  ADS  Google Scholar 

  3. Angus, J. C. & Hayman, C. C. Science 241, 913–921 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Jiang, X., Klages, C. P., Zachai, R., Hartweg, M. & Fusser, H. J. Appl. Phys. Lett. 62, 3438–3440 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Stoner, B. R., Ma, G.-H. M., Wolter, S. D. & Glass, J. T. Phys. Rev. B45, 11067–11084 (1992).

    Article  CAS  Google Scholar 

  6. Wolter, S. D., Appl. Phys. Lett. 62, 1215–1217 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Williams, B. E. & Glass, J. T. J. Mater. Res. 4, 373–384 (1988).

    Article  ADS  Google Scholar 

  8. Pehrsson, P. E., Glesener, J. & Morrish, A. Thin Solid Films 212, 81–90 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Tzou, Y., Bruley, J., Ernst, F., Ruhle, M. & Raj, R. J. Mater. Res. (submitted).

  10. Lambrecht, W. R. L. et al. Nature 364, 607–610 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Li, Z. et al. J. appl. Phys. 73, 711–715 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Crewe, A. V., Wall, J. & Langmore, J. Science 168, 1338–1340 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Tomboulian, D. H. & Bedo, D. E. Phys. Rev. 104, 590–597 (1956).

    Article  ADS  Google Scholar 

  14. Colliex, C. & Jouffrey, B. Phil. Mag. 25, 491–511 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Egerton, R. F. EELS in the Electron Microscope (Plenum, New York, 1986).

    Google Scholar 

  16. Egerton, R. F. & Whelan, M. J. J. Electron Spectrosc. 3, 232–236 (1974).

    Article  CAS  Google Scholar 

  17. Berger, S. D., McKenzie, D. R. & Martin, P. J. Phil. Mag. Lett. 6, 285–290 (1988).

    Article  ADS  Google Scholar 

  18. Weng, X., Rez, P. & Sankey, O. F. Phys. Rev. B40, 5694–5704 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Leapman, R. D., Fejes, P. L. & Silcox, J. Phys. Rev. B28, 2361–2373 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Vvedensky, D. D. in Unoccupied Electronic States (eds Fuggle, J. C. & Inglesfield, J. E. 152 (Topics in appl. Phys No. 69, Springer, New York, 1992).

    Google Scholar 

  21. Silcox, J., Xu, P. & Loane R. F. Ultramicroscopy 47, 173–186 (1992).

    Article  CAS  Google Scholar 

  22. Kirkland, E. J. Ultramicroscopy 32, 349–364 (1990).

    Article  Google Scholar 

  23. Pennycook, S. J. & Boatner, L. A. Nature 336, 565–567 (1988).

    Article  ADS  CAS  Google Scholar 

  24. McKenzie, D. R., Bruley, J. & Smith, G. B. Appl. Phys. Lett. 53, 2284–2286 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Batson, P. E. in Inst. Phys. Conf. Ser. No. 117, Section 2 (eds Cullis, A. J. & Long, N. J.) 55–62 (Inst. Phys., Bristol, 1991).

  26. Brulev, J., Cuomo, J. J., Guanieri, R. C. & Whitehair, S. J. Mater. Res. Soc. Extended Abstr. EA-19, 99–100 (1989).

    Google Scholar 

  27. Fallon, P. J. & Brown, L. M. Diamond and Related Materials 2, 1004–1011 (1994).

    Article  ADS  Google Scholar 

  28. Kohl, H. & Rose, H. Adv. Electron. electron. Phys. 65, 173–224 (1985).

    Article  CAS  Google Scholar 

  29. Batson, P. E. Phys. Rev. B44, 5556–5561 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Batson, P. E. Nature 366, 727–728 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Browning, N. D., Chisholm, M. F. & Pennycook, S. J. Nature 366, 143–146 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Mory, C. & Colliex, C. Ultramicroscopy 28, 339–346 (1989).

    Article  CAS  Google Scholar 

  33. Leapman, R. D. & Hunt, J. A. in Microscopy: The Key Research Tool (eds Lyman, C. E., Peachey, L. D. & Fisher, M. J. 39–49 (Electron Microscopy Soc. Am., Woods Hole, 1992).

    Google Scholar 

  34. Colliex, C., Krivanek, O. L. & Trebbia, P. in Inst. Phys. Conf. Ser. No. 61, Ch 4 (ed. Goringe, M. J.) 183–188 (Inst. Phys., Bristol, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, D., Tzou, Y., Raj, R. et al. Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. Nature 366, 725–727 (1993). https://doi.org/10.1038/366725a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366725a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing