Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary conservation of components of the protein translocation complex

Abstract

PROTEIN translocation into the mammalian endoplasmic reticulum requires the Sec61p complex, which consists of three membrane proteins1. The α-subunit, the homologue of Sec61p of yeast2–4, shows some similarity to SecYp5, a key component of the protein export apparatus of bacteria6,7. In Escherichia coli, SecYp is also associated with two other proteins (SecEp and band-1 protein)8,9. We have now determined the sequences of the β- and γ-subunits of the mammalian Sec61p complex. Sec61-γ is homologous to SSSlp, a suppressor of sec61 mutants in Saccharomyces cerevisiae, and can functionally replace it in yeast cells. Moreover, Sec61-γ and SSSlp are structurally related to SecEp of E. coli and to putative homologues in various other bacteria. At least two sub-units of the Sec61/SecYp complex therefore seem to be key components of the protein translocation apparatus in all classes of organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Görlich, D. & Rapoport, T. A. Cell 75, 615–630 (1993).

    Article  Google Scholar 

  2. Deshaies, R. J. & Schekman, R. J. Cell Biol. 105, 633–645 (1987).

    Article  CAS  Google Scholar 

  3. Rothblatt, J. A., Deshaies, R. J., Sanders, S. L., Daum, G. & Schekman, R. J. Cell Biol. 109, 2641–2652 (1989).

    Article  CAS  Google Scholar 

  4. Stirling, C. J., Rothblatt, J., Hosobuchi, M., Deshaies, R. & Schekman, R. Molec. Biol. Cell 3, 129–142 (1992).

    Article  CAS  Google Scholar 

  5. Görlich, D., Prehn, S., Hartmann, E., Kalies, K. U. & Rapoport, T. A. Cell 71, 489–503 (1992).

    Article  Google Scholar 

  6. Ito, K. et al. Cell 32, 789–797 (1983).

    Article  CAS  Google Scholar 

  7. Schatz, P. J. & Beckwith, J. A. Rev. Genet. 24, 215–248 (1990).

    Article  CAS  Google Scholar 

  8. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. & Wickner, W. Cell 62, 649–657 (1990).

    Article  CAS  Google Scholar 

  9. Akimaru, J., Matsuyama, S. I., Tokuda, H. & Mizushima, S. Proc. natn. Acad. Sci. U.S.A. 88, 6545–6549 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Kutay, U., Hartmann, E. & Rapoport, T. A. Trends Cell Biol. 3, 72–75 (1993).

    Article  CAS  Google Scholar 

  11. Sollner, T. et al. Nature 362, 318–324 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Esnault, Y., Blondel, M.-O., Deshaies, R. J., Schekman, R. & Kepes, F. EMBO J. 12, 4083–4093 (1993).

    Article  CAS  Google Scholar 

  13. Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J. & Beckwith, J. EMBO J. 10, 1749–1757 (1991).

    Article  CAS  Google Scholar 

  14. von Heijne, G. J. molec. Biol. 184, 99–105 (1985).

    Article  CAS  Google Scholar 

  15. Poritz, M. A. et al. Science 250, 1111–1117 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Ribes, V., Romisch, K., Giner, A., Dobberstein, B. & Tollervey, D. Cell 63, 591–600 (1990).

    Article  CAS  Google Scholar 

  17. Phillips, G. J. & Silhavy, T. J. Nature 359, 744–746 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Hann, B. C. & Walter, P. Cell 67, 131–144 (1991).

    Article  CAS  Google Scholar 

  19. Ogg, S. C., Poritz, M. A. & Walter, P. Molec. Biol. Cell 3, 895–911 (1992).

    Article  CAS  Google Scholar 

  20. Joly, J. C. & Wickner, W. EMBO J. 12, 255–263 (1993).

    Article  CAS  Google Scholar 

  21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  22. Pearson, W. R. Meth. Enzym. 183, 63–98 (1990).

    Article  CAS  Google Scholar 

  23. Higgins, D. G. & Sharp, P. M. Comput. Appl. Biosci. 5, 151–153 (1989).

    CAS  PubMed  Google Scholar 

  24. Schuler, G. D., Altschul, S. F. & Lipman, D. J. Proteins Struct. Funct. Genet. 9, 180–190 (1991).

    Article  CAS  Google Scholar 

  25. Christiansen, T. W., Sikorski, R. S., Dante, H., Shero, J. H. & Hieter, P. Gene 110, 119–122 (1992).

    Article  Google Scholar 

  26. Guthrie, C. & Fink, G. R. (eds) Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, E., Sommer, T., Prehn, S. et al. Evolutionary conservation of components of the protein translocation complex. Nature 367, 654–657 (1994). https://doi.org/10.1038/367654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367654a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing