Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single myosin molecule mechanics: piconewton forces and nanometre steps

Abstract

A new in vitro assay using a feedback enhanced laser trap system allows direct measurement of force and displacement that results from the interaction of a single myosin molecule with a single suspended actin filament. Discrete stepwise movements averaging 11 nm were seen under conditions of low load, and single force transients averaging 3–4 pN were measured under isometric conditions. The magnitudes of the single forces and displacements are consistent with predictions of the conventional swinging-crossbridge model of muscle contraction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reedy, M. K., Holmes, K. C. & Tregear, R. T. Nature 207, 1276–1280 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Huxley, H. E. Science 164, 1356–1366 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Rayment, I. et al. Science 261, 50–58 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Ford, L. E., Huxley, A. F. & Simmons, R. M. J. Physiol. 269, 441–515 (1977).

    Article  CAS  Google Scholar 

  6. Toyoshima, Y. Y., Kron, S. J. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 87, 7130–7134 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Uyeda, T. Q. P., Kron, S. J. & Spudich, J. A. J. molec. Biol. 214, 699–710 (1990).

    Article  CAS  Google Scholar 

  8. Uyeda, T. Q. P., Warrick, H. M., Kron, S. J. & Spudich, J. A. Nature 352, 307–311 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Harada, Y. & Yanagida, T. Cell Motil. Cytoskel. 10, 71–76 (1988).

    Article  CAS  Google Scholar 

  10. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. J. molec. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  11. Yanagida, T., Arata, T. & Oosawa, F. Nature 316, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Higuchi, H. & Goldman, Y. E. Nature 352, 352–354 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Nature 352, 301–306 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Brenner, B. Proc. natn. Acad. Sci. U.S.A. 88, 10490–10494 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Lombardi, V., Piazzesi, G. & Linari, M. Nature 355, 638–641 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Goldman, Y. E. & Simmons, R. M. J. Physiol. 269, 55p–57p (1977).

    CAS  PubMed  Google Scholar 

  17. Huxley, H. E. & Kress, M. J. Muscle Res. Cell Motil. 6, 153–161 (1985).

    Article  CAS  Google Scholar 

  18. Berger, C. L. & Thomas, D. D. Biochemistry 32, 3812–3821 (1993).

    Article  CAS  Google Scholar 

  19. Fajer, P. G., Fajer, E. A. & Thomas, D. D. Proc. natn. Acad. Sci. U.S.A. 87, 5538–5542 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Simmons, R. M. et al. in Mechanism of Myofilament Sliding in Muscle (eds Sugi, H. & Pollack, G. H. J.) (Plenum, New York and London, 1993).

    Google Scholar 

  23. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Nature 348, 348–352 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Kuo, S. C. & Sheetz, M. P. Science 260, 232–234 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Nature 365, 721–727 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Biophys. J. (submitted).

  27. Kron, S. J. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 83, 6272–6276 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Taylor, E. W. Crit. Rev. Biochem. 6, 103–164 (1979).

    Article  Google Scholar 

  29. Cooke, R. Crit. Rev. Biochem. 21, 53–118 (1986).

    Article  CAS  Google Scholar 

  30. Sellers, J. R. & Kachar, B. Science 249, 406–408 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Yamada, A., Ishii, N. & Takahashi, K. J. Biochem. 108, 341–343 (1990).

    Article  CAS  Google Scholar 

  32. White, H. D. & Taylor, E. W. Biochemistry 15, 5818–5826 (1976).

    Article  CAS  Google Scholar 

  33. Goldman, Y. E., Hibberd, M. G. & Trentham, D. R. J. Physiol. 354, 577–604 (1984).

    Article  CAS  Google Scholar 

  34. Huxley, A. F. Prog. Biophys. 7, 225–318 (1957).

    Google Scholar 

  35. Taylor, E. W. J. biol. Chem. 266, 294–302 (1991).

    CAS  PubMed  Google Scholar 

  36. Brenner, B. & Yu, L. C. J. Physiol. 441, 703–718 (1991).

    Article  CAS  Google Scholar 

  37. Bagshaw, C. R. Muscle Contraction. 98 (Chapman & Hall, London, 1993).

    Book  Google Scholar 

  38. Woledge, R. C., Curtin, N. A. & Homsher, E. Energetic Aspects of Muscle Contraction, 103 (Academic, London, 1985).

    Google Scholar 

  39. Haselgrove, J. C. & Huxley, H. E. J. molec. Biol. 77, 549–568 (1973).

    Article  CAS  Google Scholar 

  40. Margossian, S. S. & Lowey, S. Meth. Enzym. 85, 55–71 (1982).

    Article  CAS  Google Scholar 

  41. Toyoshima, Y. Y. et al. Nature 328, 536–539 (1987).

    Article  ADS  CAS  Google Scholar 

  42. Warrick, H. M. et al. in Methods in Cell Biology (eds Scholey, J. M.) 1–21 (Academic, San Diego, 1993).

    Google Scholar 

  43. Yoshino, S., Umazume, Y., Natori, R., Fujime, S. & Chiba, S. Biophys. Chem. 8, 317–326 (1978).

    Article  CAS  Google Scholar 

  44. Ford, L. E., Huxley, A. F. & Simmons, R. M. J. Physiol. 311, 219–249 (1981).

    Article  CAS  Google Scholar 

  45. Svoboda, K. & Block, S. M. A. Rev. Biophys. biomol. Str. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finer, J., Simmons, R. & Spudich, J. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994). https://doi.org/10.1038/368113a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368113a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing