Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homogeneous catalytic hydrogenation of supercritical carbon dioxide

Abstract

THE use of carbon dioxide as a starting material for the synthesis of organic compounds has long been a goal for synthetic chemists. The hydogenation of carbon dioxide to formic acid, methanol and other organic substances is particularly attractive, but has remained difficult. This route to formic acid has been described recently, based on the use of organometallic rhodium catalysts in dimethyl sulphoxideII and aqueous2 solvents. We report here the efficient production of formic acid in a supercritical mixture of carbon dioxide and hydrogen containing a catalytic ruthenium() phosphine complex. The use of a supercritical phase, in which hydrogen is highly miscible, leads to a very high initial rate of reaction up to 1,400 moles of formic acid per mole of catalyst per hour. The same reaction under identical conditions but in liquid organic solvents is much slower. Our results suggest that supercritical fluids represent a promising medium for homogeneous catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graf, E. & Leitner, W. J. chem. Soc., chem. Commun. 623–624 (1992).

  2. Gassner, F. & Leitner, W. J. chem. Soc., chem. Commun. 1465–1466 (1993).

  3. Saito, M., Yamauchi, Y. & Okuyama, T. (eds) Fractionation by Packed Column SFC and SFE: Principles and Applications (VCH, New York, in the press).

  4. Squires, T. G. & Paulaitis, M. E. (eds) Supercritical Fluids: Chemical and Engineering Principles and Applications (ACS Symp. Ser. No. 329, Am. chem. Soc., Washington DC, 1987).

  5. Shaw, R. W., Brill, T. B., Clifford, A. A., Eckert, C. A. & Franck, E. U. Chem. Engng News 69, 26–39 (1991).

    CAS  Google Scholar 

  6. Subramanian, B. & McHugh, M. A. Industrial and Engineering Chemistry—Process Design and Development 25, 1–12 (1986).

    Article  Google Scholar 

  7. Aaltonen, O. & Rantakylä, M. CHEMTECH 21, 240–248 (1991).

    CAS  Google Scholar 

  8. Rathke, J. W., Klinger, R. J. & Krause, T. R. Organometallics 10, 1350–1355 (1991).

    Article  CAS  Google Scholar 

  9. Weast, R. C. (ed.) CRC Handbook of Chemistry and Physics 70th edn (CRC, Boca Raton, Florida, 1990).

  10. Inoue, Y., Izumida, H., Sasaki, Y. & Hashimoto, H. Chem. Lett. 863–864 (1976).

    Article  Google Scholar 

  11. Darensbourg, D. J., Ovalles, C. & Pala, M. J. Am. chem. Soc. 105, 5937–5939 (1983).

    Article  CAS  Google Scholar 

  12. Tsai, J.-C. & Nicholas, K. M. J. Am. chem. Soc. 114, 5117–5124 (1992).

    Article  CAS  Google Scholar 

  13. Taqui Khan, M. M., Halligudi, S. B. & Shukla, S. J. molec. Cat. 57, 47–60 (1989).

    Article  Google Scholar 

  14. Burgemeister, T., Kastner, F. & Leitner, W. Angew, Chem. int. Edn engl. 32, 739–741 (1993).

    Article  Google Scholar 

  15. Saito, M. & Nitta, T. in Fractionation by Packed Column SFC and SFE: Principles and Applications (eds Saito, M., Yamauchi, Y. & Okuyama, T.) (VCH, New York, in the press).

  16. Tsang, C. Y. & Streett, W. B. Chem. Engng Sci. 36, 993–1000 (1981).

    Article  CAS  Google Scholar 

  17. Hallman, P. S., McGarvey, B. R. & Wilkinson, G. J. chem. Soc., A 3143–3150 (1968).

  18. Grushin, V. V. Accts chem. Res. 26, 279–286 (1993).

    Article  CAS  Google Scholar 

  19. James, B. R., Markham, L. D., Hui, B. C. & Rempel, G. L. J. chem. Soc., Dalton Trans. 2247–2252 (1973).

  20. Komiya, S. & Yamamoto, A. J. organomet. Chem. 46, C58–C60 (1972).

    Article  CAS  Google Scholar 

  21. Kolomnikov, I. S. et al. J. organomet. Chem. 59, 349–351 (1973).

    Article  CAS  Google Scholar 

  22. Howdle, S. M. & Poliakoff, M. J. chem. Soc., chem. Commun. 1099–1101 (1989).

  23. Howdle, S. M., Healy, M. A. & Poliakoff, M. J. Am. chem. Soc. 112, 4804–4813 (1990).

    Article  CAS  Google Scholar 

  24. Jobling, M., Howdle, S. M., Healy, M. A. & Poliakoff, M. J. chem. Soc., chem. Commun. 1287–1290 (1990).

  25. Eggers, R. & Sievers, U. in Supercritical Fluid: Science and Technology (eds Johnston, K. P. & Penninger, J. M. L.) 478–498 (ACS Symp. Ser. No. 406, Am. chem. Soc., Washington DC, 1989).

    Book  Google Scholar 

  26. Reetz, M. T., Konen, W. & Strack, T. Chimia 47, 493 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessop, P., Ikariya, T. & Noyori, R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature 368, 231–233 (1994). https://doi.org/10.1038/368231a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368231a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing