Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Removal of NO from flue gases by absorption to an iron(ii) thiochelate complex and subsequent reduction to ammonia

Abstract

THE combustion of fossil fuels generates SO2 and NOX pollutants which cause acid rain and urban smog1. Existing flue-gas desulphurization scrubbers involve wet limestone processes which are efficient for controlling SO2 emissions but are incapable of removing water-insoluble nitric oxide. The current technique for postcombustion control of nitrogen oxide emissions, ammonia-based selective catalytic reduction, suffers from various problems2,3, including poisoning of the catalysts by fly ash rich in arsenic or alkali, disposal of spent toxic catalysts and the effects of ammonia by-products on plant components downstream from the reactor. To circumvent the need for separate schemes to control SO2 and NOX, we have developed an iron(ii) thiochelate complex that enhances the solubility of NO in aqueous solution by rapidly and efficiently absorbing NO to form iron nitrosyl complexes. The bound NO is then converted to ammonia by electrochemical reduction, regenerating the active iron(ii) catalyst for continued NO capture. Our results suggest that this process can be readily integrated into existing wet limestone scrubbers for the simultaneous removal of SO2 and NOX

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wark, K. & Warner, C. F. Air Pollution—Its Origin and Control (Harper & Row, New York, 1981).

    Google Scholar 

  2. Moore, T. EPRI Journal 11, 26–33 (1984).

    Google Scholar 

  3. Kokkinos, A. et al. J. Air Waste Mgmt Ass. 42, 1498–1505 (1992).

    Article  CAS  Google Scholar 

  4. Lin, N., Littlejohn, D. & Chang, S. G. Ind. Engng Chem. Process Design Dev. 21, 725–728 (1982).

    Article  CAS  Google Scholar 

  5. Chang, S. G., Littlejohn, D. & Liu, D. K. Ind. Engng Chem. Res. 27, 2156–2161 (1988).

    Article  CAS  Google Scholar 

  6. Liu, D. K. & Chang, S. G. Envir. Sci. Technol. 22, 1196–1200 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Liu, D. K., Frick, L. P. & Chang, S. G. Envir. Sci. Technol. 22, 219–223 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Hishinuma, Y. et al. Bull. chem. Soc. Jap. 52, 2863–2865 (1979).

    Article  CAS  Google Scholar 

  9. Teramoto, M., Hiramine, S., Shimada, Y., Sugimoto, Y. & Teranishi, H. J. Chem. Engng. Jap. 11, 450–457 (1978).

    Article  CAS  Google Scholar 

  10. Chang, S. G. in Fossil Fuel Utilization, Environmental Concern (eds Maskuszewski, R. & Blaustein, B. D.) 159–175 (ACS Symp. Ser. No. 319, Am. Chem. Soc, Washington DC, 1986).

    Book  Google Scholar 

  11. Littlejohn, D. & Chang, S. G. Environ. Sci. Technol. 18, 305–310 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Littlejohn, D. & Chang, S. G. Analyt. Chem. 58, 158–160 (1986).

    Article  CAS  Google Scholar 

  13. Zagal, J. H. & Herrera, P. Electrochim. Acta 30, 449–454 (1985).

    Article  CAS  Google Scholar 

  14. Wong, C. H. & Wang, K. T. J. chin. chem. Soc. 25, 149–151 (1977).

    Article  Google Scholar 

  15. Li, H. & Fang, W. Ind. Engng. Chem. Res. 27, 770–774 (1988).

    Article  CAS  Google Scholar 

  16. Smith, K. et al. Enhanced NOx Removal in Wet Scrubbers Using Metal Chelates (US DOE Contract DE-AC2290PC90362, Pittsburgh Energy Technology Center, 1992).

    Book  Google Scholar 

  17. Uchida, S., Chang, C. S. & Wen, C. Y. Can. J. Chem. Eng. 55, 392–396 (1977).

    Article  CAS  Google Scholar 

  18. Hattori, H. et al. Kogai 13, 35–77 (1978).

    CAS  Google Scholar 

  19. Chemical Marketing Reporter 243 (6), 30–38 (1993).

  20. Petrun'kin, V. Ukr. khim. Zh. 22, 603–607 (1956).

    CAS  Google Scholar 

  21. Eskinazi, D. et al. J. Air Waste Mgmt Ass. 39, 1131–1139 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, E., Chang, SG. Removal of NO from flue gases by absorption to an iron(ii) thiochelate complex and subsequent reduction to ammonia. Nature 369, 139–141 (1994). https://doi.org/10.1038/369139a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369139a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing