Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooler estimates of Cretaceous temperatures

Abstract

THE Creataceous period is thought to have been warmer than the present1–3, with higher concentrations of atmospheric greenhouse gases such as carbon dioxide4. It has therefore been suggested5 that this time period could be used by modellers as an analogue for future climate change. But the Cretaceous Equator-to-Pole temperature gradient was flatter than today's, leading some to suggest that Cretaceous climate arose from a combination of factors, with higher atmospheric carbon dioxide concentrations leading to general warming, and other factors, such as increased ocean heat transport, leading to flattening of the latitudinal temperature gradient. Here we report new records of ocean palaeotemperature for Cenomanian sites in the Atlantic and Pacific oceans which, together with a re-evaluation of published data, cast doubt on the idea that the Cretaceous period was generally warmer. These data confirm that the latitudinal temperature gradient was flatter, but suggest that the global mean temperature was much cooler than previously believed, with minimum mean equatorial temperatures close to present values and polar temperatures close to 0 °C. In the light of these findings, the climatic role of atmospheric carbon dioxide in determining Cretaceous climate is unclear, suggesting that the Cretaceous cannot be used as an analogue for future climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hallam, A. J. geol. Soc. Lond. 142, 433–445 (1985).

    Article  Google Scholar 

  2. Barron, E. J. Earth Sci. Rev. 18, 305–338 (1983).

    Article  ADS  Google Scholar 

  3. Frakes, L. A. Climates Through Time (Elsevier, New York, 1979).

    Google Scholar 

  4. Berner, R. A. Nature 358, 114 (1992).

    Article  ADS  Google Scholar 

  5. Budyko, M. I., Ronov, A. B. & Yanshin, A. L. History of the Earth's Atmosphere (Springer, Berlin, 1987).

    Book  Google Scholar 

  6. Sellwood, B. W. & Price, G. D. Phil. Trans. R. Soc. B341, 225–233 (1993).

    Article  Google Scholar 

  7. Crowley, T. G. & North, G. R. Palaeoclimatology (Oxford Univ. Press, 1991).

    Google Scholar 

  8. Barron, E. J., Fawcett, P. J., Pollard, D. & Thompson, S. Phil. Trans. R. Soc. B341, 307–316 (1993).

    Article  Google Scholar 

  9. Barron, E. J. & Washington, W. M. J. geophys. Res. 89, 1267–1279 (1984).

    Article  ADS  Google Scholar 

  10. Schneider, S. H., Thompson, S. L. & Barron, E. J. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 554–560 (American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  11. Spicer, R. A. & Corfield, R.M. Geol. Mag. 129, 169–180 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Spicer, R. A., Rees, P. McA. & Chapman, J. L. Phil Trans. R. Soc. B341, 277–286 (1993).

    Article  Google Scholar 

  13. Francis, J. E. & Frakes, L. A. in Sedimentology Review 1 (ed. Wright, V. P.) 17–30 (Blackwell, Oxford, 1993).

    Book  Google Scholar 

  14. Marshall, J. D. Geol. Mag. 129, 143–160 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Doyle, P. Palaeogeogr. Palaeoclimatol. Palaeoecol. 92, 207–216 (1992).

    Article  Google Scholar 

  16. Stevens, G. R. & Clayton, R. N. N.Z. J. Geol. Geophys. 14, 829–897 (1971).

    Article  CAS  Google Scholar 

  17. Sæelen, G. Palaeontology 32, 765–798 (1989).

    Google Scholar 

  18. Lowenstam, H. A. & Epstein, S. J. Geol. 62, 207–248 (1954).

    Article  ADS  CAS  Google Scholar 

  19. Bowen, R. J. Paleont. 35, 1077–1084 (1961).

    Google Scholar 

  20. Ditchfield, P. W., Marshall, J. D. & Pirrie, D. Palaeogeogr. Palaeclimatol. Palaeoecol. 107, 79–101 (1994).

    Article  ADS  Google Scholar 

  21. Douglas, R. G. & Savin, S. M. in Init. Rep. DSDP Leg 32, 509–520 (1975).

  22. Léttole, R., Grazzini, C. V. & Pierre, C. in Init. Rep. DSDP Leg 48, 741–755 (1979).

  23. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Geol. Soc. am. Bull. 64, 1315–1326 (1953).

    Article  ADS  CAS  Google Scholar 

  24. Craig, H. in Stable Isopes in Oceanographic Studies and Palaeotemperatures (ed. Tongiorgi, E.) 161–182 (Consiglio Nazionale delle Richerche, Pisa, 1965).

    Google Scholar 

  25. Anderson, T. F. & Arthur, M. A. 1.1–1.151 (Short Course No. 10, Society of Economic Paleontologists and Mineralogists, Tulsa, 1983).

  26. Shackleton, N. J. & Kennett, J. P. Init. Rep. DSDP Leg 29, 743–755 (1975).

  27. Leckie, R.M. Micropaleontology 33, 164–176 (1987).

    Article  Google Scholar 

  28. McCrea, J. M. J. chem. Phys. 18, 849–857 (1950).

    Article  ADS  CAS  Google Scholar 

  29. Craig, H. Geochim. cosmochim Acta 12, 133–149 (1957).

    Article  ADS  CAS  Google Scholar 

  30. Savin, S. M. & Douglas, R. G. Geol. Soc. Am. Bull. 84, 2327–2342 (1973).

    Article  ADS  CAS  Google Scholar 

  31. Anderson, T. F., Popp, B. N., Williams, A. C., Ho, L.-Z & Hudson, J. D. J. geol. Soc. Lond. 151, 125–138 (1994).

    Article  Google Scholar 

  32. Barrera, E., Huber, B. T., Savin, S. M. & Webb, P-N. Paleoceanography 2, 21–47 (1987).

    Article  ADS  Google Scholar 

  33. Miskell, K. J., Brass, G. W. & Harrison, C. G. A. Bull. Am. Ass. Petrol. Geol. 69, 996–1012 (1985).

    Google Scholar 

  34. Murray, R. W., Jones, D. L. & Buchholtz ten Brink, M. R. Geology 20, 271–274 (1992).

    Article  ADS  CAS  Google Scholar 

  35. Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. in Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.) 371–399 (Spec. Publ. No. 26, Geological Society of London, 1987).

    Google Scholar 

  36. Barron, E. J. & Peterson, W.H. Science 244, 684–686 (1989).

    Article  ADS  CAS  Google Scholar 

  37. Kasting, J. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 83–95 (1989).

    Article  CAS  Google Scholar 

  38. Valdes, P. J., Sellwood, B. W. & Price, G. D. Palaeoclimatology (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellwood, B., Price, G. & Valdest, P. Cooler estimates of Cretaceous temperatures. Nature 370, 453–455 (1994). https://doi.org/10.1038/370453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing