Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Penicillin acylase has a single-amino-acid catalytic centre

Abstract

PENICILLIN acylase (penicillin amidohydrolase, EC 3.5.1.11) is widely distributed among microorganisms, including bacteria, yeast and filamentous fungi. It is used on an industrial scale for the production of 6-aminopenicillanic acid, the starting material for the synthesis of semi-synthetic penicillins. Its in vivo role remains unclear, however, and the observation that expression of the Escherichia coli enzyme in vivo is regulated by both temperature and phenylacetic acid has prompted speculation that the enzyme could be involved in the assimilation of aromatic compounds as carbon sources in the organism's free-living mode1. The mature E. coli enzyme is a periplasmic 80K heterodimer of A and B chains (209 and 566 amino acids, respectively2,3) synthesized as a single cytoplasmic precursor containing a 26-amino-acid signal sequence to direct export to the cytoplasm4 and a 54-amino-acid spacer between the A and B chains which may influence the final folding of the chains5. The N-terminal serine of the B chain reacts with phenylmethylsulphonyl fluoride, which is consistent with a catalytic role for the serine hydroxyl group. Modifying this serine to a cysteine6'7 inactivates the enzyme, whereas threonine, arginine or glycine substitution prevents in vivo processing of the enzyme7, indicating that this must be an important recognition site for cleavage. Here we report the crystal structure of penicillin acylase at 1.9 Å resolution. Our analysis shows that the environment of the catalytically active N-terminal serine of the B chain contains no adjacent histidine equivalent to that found in the serine proteases. The nearest base to the hydroxyl of this serine is its own α-amino group, which may act by a new mechanism to endow the enzyme with its catalytic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burlingame, R. & Chapman, P. J. J. Bact. 155, 113–121 (1983).

    CAS  PubMed  Google Scholar 

  2. Bock, A. et al. FEMS Microbiol. Lett. 20, 135–140 (1983).

    Article  Google Scholar 

  3. Bock, A. et al. FEMS Microbiol. Lett. 20, 140–144 (1983).

    Google Scholar 

  4. Schumacher, G., Sizmann, D., Haug, H., Buckel, P. & Bock, A. Nucleic Acids Res. 14, 5713–5726 (1986).

    Article  CAS  Google Scholar 

  5. Daumy, G. O., Danley, D. & McColl, A. J. Bact. 163, 1279–1281 (1985).

    CAS  PubMed  Google Scholar 

  6. Slade, A. et al. Eur. J. Biochem. 197, 75–80 (1991).

    Article  CAS  Google Scholar 

  7. Choi, K. S., Kim, J. A. & Kang, H. S. J. Bact. 174, 6270–6276 (1992).

    Article  CAS  Google Scholar 

  8. Savidge, T. A. & Cole, M. Meth. Enzym. 43, 705–725 (1975).

    Article  CAS  Google Scholar 

  9. Huang, H. T., Seto, T. A. & Shull, G. M. Appl. Microbiol. 11, 1–6 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin, J. et al. Biochim. biophys. Acta 1037, 133–139 (1990).

    Article  CAS  Google Scholar 

  11. Kutzbach, C. & Rauenbusch, E. Hoppe-Seyler's Z. physiol. Chem. 354, 45–53 (1974).

    Article  Google Scholar 

  12. Kraut, J. A. Rev. Biochem. 46, 331–358 (1977).

    Article  CAS  Google Scholar 

  13. Konecny, J. Biotech. Lett. 3, 112–117 (1981).

    Article  Google Scholar 

  14. Blow, D. M., Birktoft, J. J. & Hartley, B. S. Nature 221, 337–339 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Tanford, C. Adv. Protein Chem. 17, 69–165 (1962).

    Article  CAS  Google Scholar 

  16. Virden, R. Biotechnol. Genet. Eng. Rev. 8, 189–218 (1990).

    Article  CAS  Google Scholar 

  17. Cole, M. Biochem. J. 155, 733–739 (1969).

    Article  Google Scholar 

  18. Robertus, J. D., Kraut, J., Alden, R. & Birktoft, J. Biochemistry 11, 4293–4303 (1972).

    Article  CAS  Google Scholar 

  19. Strynadka, N. C. J. et al. Nature 359, 700–705 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Miller, M., Rao, J. K. M., Wlodawer, A. & Gribskov, M. R. FEBS Lett. 328, 275–279 (1993).

    Article  CAS  Google Scholar 

  21. Hunt, P. D., Tolley, S. P., Ward, R. J., Hill, C. P. & Dodson, G. G. Prot. Engng 3, 635–639 (1990).

    Article  CAS  Google Scholar 

  22. CCP4 Acta crystallogr. D 50, 760–763 (1994).

  23. Brunger, A. T., Kuriyan, J. & Karplus, M. Science 23, 458–460 (1987).

    Article  ADS  Google Scholar 

  24. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1990).

    Article  Google Scholar 

  25. Lamzin, U. S. & Wilson, K. S. Acta crystallogr. D49, 129–147 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duggleby, H., Tolley, S., Hill, C. et al. Penicillin acylase has a single-amino-acid catalytic centre. Nature 373, 264–268 (1995). https://doi.org/10.1038/373264a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373264a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing