Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for oestrogens in the male reproductive system

Abstract

Oestrogen is considered to be the ‘female’ hormone, whereas testosterone is considered the ‘male’ hormone. However, both hormones are present in both sexes. Thus sexual distinctions are not qualitative differences, but rather result from quantitative divergence in hormone concentrations and differential expressions of steroid hormone receptors. In males, oestrogen is present in low concentrations in blood, but can be extraordinarily high in semen, and as high as 250 pg ml−1in rete testis fluids1,2, which is higher than serum oestradiol in the female3. It is well known that male reproductive tissues express oestrogen receptors4,5,6,7, but the role of oestrogen in male reproduction has remained unclear. Here we provide evidence of a physiological role for oestrogen in male reproductive organs. We show that oestrogen regulates the reabsorption of luminal fluid in the head of the epididymis. Disruption of this essential function causes sperm to enter the epididymis diluted, rather than concentrated, resulting in infertility. This finding raises further concern over the potential direct effects of environmental oestrogens on male reproduction and reported declines in human sperm counts8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seminiferous tubules, rete testis and efferent ductules in ERKO and wild-type mice.
Figure 2: Testicular mass between 32 and 185 days of age (mean ± s.e.m.).
Figure 3: Change in testis mass 48 h after occlusion of the initial-segment epididymis.
Figure 4: Ligated efferent ductules in vitro.
Figure 5: The effects of in vitro ligation on changes in luminal area of efferent ductule segments 24 h after ligation.

Similar content being viewed by others

References

  1. Ganjam, V. K. & thinsp;Amann, R. P. Steroid content of fluids and sperm entering and leaving the bovine epididymis, in epididymal tissue, and in accessory sex gland secretions. Endocrinology 99, 1618–1630 (1976).

    Article  CAS  Google Scholar 

  2. Free, M. J. & Jaffe, R. A. Collection of rete testis fluid from rats without previous efferent duct ligation. Biol. Reprod. 20, 269–278 (1979).

    Article  CAS  Google Scholar 

  3. Smith, M. S., Freeman, M. E. & Neill, J. D. The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96, 219–226 (1975).

    Article  CAS  Google Scholar 

  4. Cooke, P. S., Young, P., Hess, R. A. & Cunha, G. R. Estrogen receptor expression in developing epididymis, efferent ductules, and other male reproductive organs. Endocrinology 128, 2874–2879 (1991).

    Article  CAS  Google Scholar 

  5. Greco, T., Duello, T. & Gorski, J. Estrogen receptors; estradiol; and diethylstilbestrol in early development: the mouse as a model for the study of estrogen receptors and estrogen sensitivity in embryonic development of male and female reproductive tracts. Endocr. Rev. 14, 59–71 (1993).

    CAS  PubMed  Google Scholar 

  6. Schleicher, G., Drews, U., Stumpf, W. E. & Sar, M. Differential distribution of dihydrotestosterone and estradiol binding sites in the epididymis of the mouse. An autoradiographic study. Histochemistry 81, 139–147 (1984).

    Article  CAS  Google Scholar 

  7. West, N. & Brenner, R. Estrogen receptor in the ductuli efferentes epididymis and testis of rhesus and cynomolgus macaques. Biol. Reprod. 42, 533–538 (1990).

    Article  CAS  Google Scholar 

  8. Sharpe, R. M. & Skakkebaek, N. E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341, 1392–1395 (1993).

    Article  CAS  Google Scholar 

  9. Auger, J., Kunstmann, J. M., Czyglik, F. & Jouannet, P. Decline in semen quality among fertile men in Paris during the past 20 years. N. Engl. J. Med. 332, 281–285 (1995).

    Article  CAS  Google Scholar 

  10. Hess, R. A. et al. Estrogen receptor (α &β) expression in the excurrent ducts of the adult male rat reproductive tract. J. Androl. 18, 602–611 (1997).

    CAS  PubMed  Google Scholar 

  11. Fisher, J. S. et al. Immunolocalisation of oestrogen receptor-α within the testis and excurrent ducts of the rat and marmoset monkey from perinatal life to adulthood. J. Endocrinol. 153, 485–495 (1997).

    Article  CAS  Google Scholar 

  12. Ilio, K. & Hess, R. Structure and function of the ductuli efferentes: A review. Microsc. Res. Tech. 29, 432–467 (1994).

    Article  CAS  Google Scholar 

  13. Yeung, C. H., Cooper, T. G., Bergmann, M. & Schulze, H. Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia. Am. J. Anat. 191, 261–279 (1991).

    Article  CAS  Google Scholar 

  14. Robaire, B. & Hermo, L. in The Physiology of Reproduction (eds Knobil, E. &Neill, J.) 999–1080 (Raven, New York, (1988)).

    Google Scholar 

  15. Chan, H. C., Zhou, W. L., Fu, W. O., Ko, W. H. & Wong, P. Y. Different regulatory pathways involved in ATP-stimulated chloride secretion in rat epididymal epithelium. J. Cell. Physiol. 164, 271–276 (1995).

    Article  CAS  Google Scholar 

  16. Clulow, J., Jones, R. & Hansen, L. Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp. Physiol. 79, 915–928 (1994).

    Article  CAS  Google Scholar 

  17. Lubahn, D. B. et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl Acad. Sci. USA 90, 11162–11166 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Korach, K. S. et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog. Horm. Res. 51, 159–186 (1996).

    CAS  PubMed  Google Scholar 

  19. Eddy, E. M. et al. Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137, 4796–4805 (1996).

    Article  CAS  Google Scholar 

  20. Smith, G. The effects of ligation and the vasa efferentia and vasectomy on testicular function in the adult rat. Endocrinology 23, 385–399 (1962).

    Article  Google Scholar 

  21. Hess, R., Moore, B., Forrer, J., Linder, R. & Abuel-Atta, A. The fungicide benomyl [methyl 1-butylcarbamoyl-2-benzimidazole carbamate] causes testicular dysfunction by inducing the sloughing of germ cells and occlusion of efferent ductules. Fundam. Appl. Toxicol. 17, 733–745 (1991).

    Article  CAS  Google Scholar 

  22. Wakeling, A., Dukes, M. & Bowler, J. Apotent specific pure antiestrogen with clinical potential. Cancer Res. 51, 3867–3873 (1991).

    CAS  Google Scholar 

  23. Kuiper, G. G. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–870 (1997).

    Article  CAS  Google Scholar 

  24. Paech, K. et al. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science 277, 1508–1510 (1997).

    Article  CAS  Google Scholar 

  25. Carani, C. et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95 (1997).

    Article  CAS  Google Scholar 

  26. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  27. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994). Erratum, N. Engl. J. Med. 332, 131 (1995).

    Google Scholar 

  28. Krause, W., Holland-Moritz, H. & Schramm, P. Treatment of idiopathic oligozoospermia with tamoxifen—a randomized controlled study. Int. J. Androl. 15, 14–18 (1992).

    Article  CAS  Google Scholar 

  29. Sharpe, R. M. Declining sperm counts in men—is there an endocrine cause? J. Endocrinol. 136, 357–360 (1993).

    Article  CAS  Google Scholar 

  30. Hess, R. A. & Moore, B. J. in Methods in Reproductive Toxicology (eds Chapin, R. E. &Heindel, J. J.) 52–85 (Academic, San Diego, (1993)).

    Book  Google Scholar 

Download references

Acknowledgements

We thank E. Jassim and C. Finnigan-Bunick for technical assistance, P. Cooke, V. K. Ganjam and D. J. Miller for reviews of the manuscript and A. Wakeling and Zeneca Pharmaceuticals for providing ICI 182, 780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex A. Hess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, R., Bunick, D., Lee, KH. et al. A role for oestrogens in the male reproductive system. Nature 390, 509–512 (1997). https://doi.org/10.1038/37352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37352

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing