Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral metal complexes with large octupolar optical nonlinearities

Abstract

OPTICALLY nonlinear organic materials show considerable potential for applications in optical signal processing and telecommunications1,2. Most materials are based on the p-nitro-aniline template, in which the optical nonlinearities are intimately associated with quasi-one-dimensional charge transfer. But there are problems associated with this conventional approach, arising from the strongly dipolar nature of the molecules2. It has recently been recognized3–5 that two- and three-dimensional stereochemistry offers new possibilities for the design and synthesis of optically nonlinear molecules, in which charge transfer is multidirectional rather than dipolar in character; octupolar nonlinearities have now been demonstrated in several molecular systems5–7. Tri-substituted ruthenium complexes6 appear particularly attractive because intense, multidirectional metal-to-ligand charge transfer leads to a significant enhancement of the optical nonlinearity, as quantified by the quadratic hyperpolarizability, β. Here we show that the choice of ligand can further increase β to values in excess of 10-27e.s.u., comparable to the best dipolar optically nonlinear molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chemla, D. S. & Zyss, J. (eds) Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Boston, 1987).

    Google Scholar 

  2. Zyss, J. (ed.) Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, Boston, 1993).

    Google Scholar 

  3. Zyss, J. Nonlin. Opt. 1, 3–18 (1991).

    CAS  Google Scholar 

  4. Zyss, J. J. chem. Phys. 98, 6583–6599 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Zyss, J. & Ledoux, I. Chem. Rev. 94, 77–105 (1994).

    Article  CAS  Google Scholar 

  6. Zyss, J., Dhenaut, C., Chau Van, T. & Ledoux, I. Chem. Phys. Lett. 206, 409–414 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Verbiest, T. et al. Opt. Lett. 18, 525 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Oudar, J-L. J. chem. Phys. 67, 446–457 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Terhune, R. W., Maker, P. D. & Savage, C. M. Phys. Rev. Lett. 14, 681–684 (1965).

    Article  ADS  Google Scholar 

  10. Maker, P. D. Phys. Rev. A1, 923–951 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Cyvin, S. G., Rauch, J. E. & Decius, J. C. J. chem. Phys. 43, 4083–4095 (1965).

    Article  ADS  CAS  Google Scholar 

  12. Joffre, M., Yaron, D., Silbey, R. J. & Zyss, J. J. chem. Phys 97, 5607–5615 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Barzoukas, M., Blanchard-Desce, M., Josse, D., Lehn, J-M. & Zyss, J. Chem. Phys. 133, 323–329 (1989).

    Article  CAS  Google Scholar 

  14. Blanchard-Desce, M., Lehn, J-M., Barzoukas, M., Ledoux, I. & Zyss, J. Chem. Phys. 181, 281–289 (1994).

    Article  CAS  Google Scholar 

  15. Rao, V. P., Jen, A. K. Y., Wong, K. Y. & Drost, K. J. J. chem. Soc., chem. Commun. 1118–1120 (1993).

  16. Gilmour, S. et al. Chem. Mater. 6, 1603–1604 (1994).

    Article  CAS  Google Scholar 

  17. Juris, A. et al. Coord. Chem. Rev. 84, 85–277 (1988).

    Article  CAS  Google Scholar 

  18. Loucif-Saibi, R. et al. Chem. Phys. 167, 369–375 (1992).

    Article  Google Scholar 

  19. Bourgault, M. et al. J. chem. Soc. chem. Commun. 1623–1624 (1993).

  20. Nunzi, J-M., Charra, F., Fiorini, C. & Zyss, J. Chem. Phys. Lett. 219, 349–354 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Charra, F., Kajzar, F., Nunzi, J-M., Raimond, P. & Idiart, E. Opt. Lett. 18, 941–943 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Fiorini, C., Charra, F., Nunzi, J-M. & Zyss, J. in Proc. Eur. Conf. Laser and Electro-optics 33–34 (IEEE, Piscataway, 1994).

    Book  Google Scholar 

  23. Juris, A., Campagna, S., Bidd, I., Lehn, J-M. & Ziessel, R. Inorg. Chem. 27, 4007–4011 (1988).

    Article  CAS  Google Scholar 

  24. Kocian, O., Mortimer, R. J. & Beer, P. D. J. chem. Soc., Perkin Trans. I 3203–3205 (1990).

  25. Kelly, J. M., O'Connell, C. M. & Vos, J. G. Inorg. Chim. Acta 64, L75–L76 (1982).

    Article  CAS  Google Scholar 

  26. Sullivan, B. P., Salmon, D. J. & Meyer, T. J. Inorg. Chem. 17, 3334–3341 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhenaut, C., Ledoux, I., Samuel, I. et al. Chiral metal complexes with large octupolar optical nonlinearities. Nature 374, 339–342 (1995). https://doi.org/10.1038/374339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing