Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stochastic resonance without tuning

Abstract

STOCHASTIC resonance1‡-4 (SR) is a phenomenon wherein the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular, non-zero level of noise5 ‡-7. SR has been proposed as a means for improving signal detection in a wide variety of systems, including superconducting quantum interference devices8, and may be used in some natural systems such as sensory neurons9‡-15. But for SR to be effective in a singleunit system (such as a sensory neuron or a single ion channel), the optimal intensity of the noise must be adjusted as the nature of the signal to be detected changes15. This has been thought to impose a limitation on the practical and natural uses of SR. Here we show that the ability of a summing network of excitable units to detect a range of weak (sub-threshold) signals (either periodic or aperiodic) can be optimized by a fixed level of noise, irrespective of the nature of the input signal. We also show that this noise does not significantly degrade the ability of the network to detect suprathreshold signals. Thus, large nonlinear networks do not suffer from the limitations of SR in single units, and might be able to use a single noise level, such as that provided by the intrinsic noise of the individual components, to enhance the system's sensitivity to weak inputs. This suggests a functional role for neuronal noise14,16‡-18 in sensory systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Benzi, R., Sutera, S. & Vulpiani, A. J. Phys. A14, L453–L457 (1981).

    ADS  Google Scholar 

  2. Nicolis, C. Tellus 34, 1–9 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  3. Benzi, R., Parisi, G., Sutera, A. & Vulpiani, A. Tellus 34, 10–18 (1982).

    Article  ADS  Google Scholar 

  4. Fauve, S. & Heslot, F. Phys. Lett. A97, 5–7 (1983).

    Article  Google Scholar 

  5. Moss, F., Pierson, D. & O'Gorman, D. Int. J. Bifurc. Chaos 4, 1383–1397 (1994).

    Article  Google Scholar 

  6. Wiesenfeld, K. & Moss, F. Nature 373, 33–36 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Jung, P. Phys. Rep. 234, 175–295 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Hibbs, A. D. et al. J. appl. Phys. 77, 2582–2590 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Longtin, A., Bulsara, A. & Moss, F. Phys. Rev. Lett. 67, 656–659 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Bulsara, A., Jacobs, E. W., Zhou, T., Moss, F. & Kiss, L. J. theor. Biol. 152, 531–555 (1991).

    Article  CAS  Google Scholar 

  11. Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Nature 365, 337–340 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Moss, F., Douglass, J. K., Wilkens, L., Pierson, D. & Pantazelou, E. Ann. N.Y. Acad. Sci. 706, 26–41 (1993).

    Article  ADS  Google Scholar 

  13. Longtin, A. J. J. Statist. Phys. 70, 309–327 (1993).

    Article  ADS  Google Scholar 

  14. Chialvo, D. R. & Apkarian, A. V. J. Statist. Phys. 70, 375–391 (1993).

    Article  ADS  Google Scholar 

  15. Wiesenfeld, K., Pierson, D., Pantazelou, E., Dames, C. & Moss, F. Phys. Rev. Lett. 72, 2125–2129 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Denk, W. & Webb, W. W. Phys. Rev. Lett. 63, 207–210 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Croner, L. J., Purpura, K. & Kaplan, E. Proc. natn. Acad. Sci. U.S.A. 90, 8128–8130 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Braun, H. A., Wissing, H., Schäfer, K. & Hirsch, M. C. Nature 367, 270–273 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Shepherd, G. M. Neurobiology, 2nd edn (Oxford Univ. press, 1988).

    Google Scholar 

  20. Pantazelou, E., Moss, F. & Chialvo, D. in Noise in Physical Systems and 1/f Fluctuations (eds Handel, P. H. & Chung, A. L.) 549–552 (Am. Inst. Physics Press, New York, 1993).

    Google Scholar 

  21. Knight, B. W. J. gen. Physiol. 59, 734–766 (1972).

    Article  CAS  Google Scholar 

  22. Collins, J. J., Chow, C. C. & Imhoff, T. T. Phys. Rev. Lett. (submitted).

  23. Jung, P., Behn, U., Pantazelou, E. & Moss, F. Phys Rev. A46, R1709–R1712 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Kiss, L. B. et al. J. statist. Phys. 70, 451–462 (1993).

    Article  ADS  Google Scholar 

  25. Bulsara, A. R. & Schmera, G. Phys. Rev. E47, 3734–3737 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Neiman, A. & Schimansky-Geier, L. Phys. Lett. A197, 379–386 (1995).

    Article  MathSciNet  CAS  Google Scholar 

  27. Inchiosa, M. E. & Bulsara, A. R. Phys. Lett. A200, 283–288 (1995).

    Article  CAS  Google Scholar 

  28. Inchiosa, M. E. & Bulsara, A. R. Phys. Rev. E (in the press).

  29. Inchiosa, M. E., Bulsara, A. R., Lindner, J. F., Meadows, B. K. & Ditto, W. L. in Proc. 3rd Technical Conf. on Nonlinear Dynamics (Chaos) and Full Spectrum Processing (Am. Inst. Physics Press, New York, in the press).

  30. Lindner, J. F., Meadows, B. K., Ditto, W. L., Inchiosa, M. E. & Bulsara, A. R. Phys. Rev. Lett. (in the press).

  31. Kiss, L. B. in Proc. 3rd Technical Conf. on Nonlinear Dynamics (Chaos) and Full Spectrum Processing (Am. Inst. Physics Press, New York, in the press).

  32. Gingl, Z., Kiss, L. & Moss, F. Europhys. Lett. 29, 191–196 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Kramers, H. A. Physica 7, 284–302 (1940).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. De Luca, C. J., LeFever, R. S., McCue, M. P. & Xenakis, A. P. J. Physiol. 329, 113–128 (1982).

    Article  CAS  Google Scholar 

  35. Mannella, R. & Palleschi, V. Phys. Rev. A40, 3381–3386 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, J., Chow, C. & Imhoff, T. Stochastic resonance without tuning. Nature 376, 236–238 (1995). https://doi.org/10.1038/376236a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376236a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing