Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cellular prion protein binds copper in vivo

Abstract

The normal cellular form of prion protein (PrPC) is a precursor to the pathogenic protease-resistant forms (PrPSc) believed to cause scrapie, bovine spongiform encephalopathy (BSE) and Creutzfeldt–Jakob disease1. Its amino terminus contains the octapeptide PHGGGWGQ, which is repeated four times and is among the best-preserved regions of mammalian PrPC. Here we show that the amino-terminal domain of PrPCexhibits five to six sites that bind copper (Cu(II)) presented as a glycine chelate. At neutral pH, binding occurs with positive cooperativity, with binding affinity compatible with estimates for extracellular, labile copper. Two lines of independently derived PrPCgene-ablated (Prnp0/0) mice exhibit severe reductions in the copper content of membrane-enriched brain extracts and similar reductions in synaptosomal and endosome-enriched subcellular fractions. Prnp0/0mice also have altered cellular phenotypes, including a reduction in the activity of copper/zinc superoxide dismutase and altered electrophysiological responses in the presence of excess copper. These findings indicate that PrPCcan exist in a Cu-metalloprotein form in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cu-binding properties of PrP23–98.
Figure 2: Assessment of copper content.
Figure 3: Effect of copper on spontaneous inhibitory synaptic currents in cerebellar Purkinje cells in Prnp0/0and wild-type mic.

Similar content being viewed by others

References

  1. Prusiner, S. B. Prion diseases and the BSE crisis. Science 278, 245–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Hornshaw, M. P., McDermott, J. R. & Candy, J. M. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621–629 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Hornshaw, M. P., McDermott, J. R., Candy, J. M. & Lakey, J. H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: Structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 993–999 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Lau, S. J. & Sarkar, B. Ternary coordination complex between human serum albumin, copper (II) and L-histidine. J. Biol. Chem. 246, 5938–5943 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Scatchard, G. The attraction of proteins for small molecules and ions. Ann. NY Acad. Sci. 51, 660–567 (1949).

    Article  CAS  ADS  Google Scholar 

  6. Giroux, E. & Schoun, J. Copper and zinc ion binding by bovine, dog and rat serum albumins. J. Inorg. Biochem. 14, 359–362 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Masuoka, J., Hegenauer, J., Van Dyke, B. R. & Saltmann, P. Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J. Biol. Chem. 268, 21533–21537 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Curzon, G. & Vallet, L. The purification of human caeruloplasmin. Biochem. J. 74, 279–287 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manson, J. C. et al.129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Stahl, N., Borchelt, D. R., Hsiao, K. & Prusiner, S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Collinge, J. et al.Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Narahashi, T., Ma, J. Y., Arakawa, O., Reuveny, E. & Nakahiro, M. GABA receptor-channel complex as a target site of mercury, copper, zinc and lanthanides. Cell. Mol. Neurobiol. 14, 599–621 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Linder, M. C. Biochemistry of Copper (Plenum, New York, (1991)).

    Book  Google Scholar 

  14. Hartter, D. E. & Barnea, A. Brain tissue accumulates 67copper by two ligand-dependent saturable processes. J. Biol. Chem. 263, 799–805 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Sarkar, B. & Wigfield, Y. Evidence for albumin-Cu(II)-amino acid ternary complex. Can. J. Biochem. 46, 601–607 (1968).

    Article  CAS  PubMed  Google Scholar 

  16. Neumann, P. Z. & Sass-Kortsak, A. The state of copper in human serum: evidence for an amino acid-bound fraction. J. Clin. Invest. 46, 646–658 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martell, A. E. & Smith, R. M. Amino acids. in Critical Stability Constants (Plenum, New York, (1974)).

    Google Scholar 

  18. Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wüthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 413, 282–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Miura, T., Hori-i, A. & Takeuchi, H. Metal-dependent α-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 396, 248–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Goldfarb, L. G. et al.Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc. Natl Acad. Sci. USA 88, 10926–10930 (1991).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Kretzschmar, H. A. et al.Molecular cloning of a human prion protein cDNA. DNA 5, 315–324 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Brown, D. R., Schmidt, B. & Kretzschmar, H. A. Role of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature 380, 345–347 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Büeler, H. et al.Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  ADS  Google Scholar 

  25. Nagy, A. & Delgado-Escueta, A. V. Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J. Neurochem. 43, 1114–1123 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Soldati, T., Shapiro, A. D. & Pfeffer, S. R. Reconstitution of Rab9 endosomal targeting and nucleotide exchange using purified Rab9-GDP dissociation inhibitor complexes and endosome-enriched membranes. Meth. Enzymol. 257, 253–259 (1995).

    Article  CAS  Google Scholar 

  27. Klockenkämper, R., Knoth, J., Prange, A. & Schwenke, H. Total-reflection X-ray fluorescence spectroscopy. Analyt. Chem. 64, 1115A–1121A (1992).

    Google Scholar 

Download references

Acknowledgements

We thank C. Weissmann for providing Prnp0/0 mice; S. Prusiner and R. Race for antisera; H. Kijewski, S. Hampe and E. Jaikaran for assistance; and B. Sarkar, C. Huang and J. Masuoka for discussions. This study was supported by research grants for the University of Toronto Connaught New Staff Fund, the University of Toronto Dean'Fund, and the Alzheimer Association of Ontario to D.W., as well as the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, the Wilhelm Sander-Stiftung, and the Deutsche Forschungsgemeinschaft to H.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Kretzschmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D., Qin, K., Herms, J. et al. The cellular prion protein binds copper in vivo. Nature 390, 684–687 (1997). https://doi.org/10.1038/37783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37783

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing