Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yttrium and lanthanum hydride films with switchable optical properties

Abstract

IN many substances, changes in chemical composition, pressure or temperature can induce metal-to-insulator transitions1. Although dramatic changes in optical and electrical properties accompany such transitions, their interpretation is often complicated by attendant changes in crystallographic structure2. Yttrium, lanthanum and the trivalent rare-earth elements form hydrides that also exhibit metal–insulator transitions3–5, but the extreme reactivity and fragility of these materials hinder experimental studies5,6. To overcome these difficulties, we have coated thin films of yttrium and lanthanum with a layer of palladium through which hydrogen can diffuse. Real-time transitions from metallic (YH2 or LaH2) to semiconducting (YH3 or LaH3) behaviour occur in these films during continuous absorption of hydrogen, accompanied by pronounced changes in their optical properties. Although the timescale on which this transition occurs is at present rather slow (a few seconds), there appears to be considerable scope for improvement through the choice of rare-earth element and by adopting electrochemical means for driving the transition. In view of the spectacular changes in optical properties—yttrium hydride, for example, changes from a shiny mirror to a yellow, transparent window—metal hydrides might find important technological applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mott, N. F. in Metal-Insulator transitions 2nd edn (Taylor & Francis, London 1990).

    Book  Google Scholar 

  2. Verleur, H. W., Barker, A. S. Jr & Berglund, C. N. Phys. Rev. 172, 788–798 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Libowitz, G. G. Ber. Bunsenges. phys. Chem. 77, 837–845 (1973).

    Google Scholar 

  4. Libowitz, G. G. & Maeland, A. J. in Handbook on the Physics and Chemistry of Rare Earths (eds Gschneidner, K. A. & Eyring, L.) 299–336 (North Holland, Amsterdam, 1979).

    Google Scholar 

  5. Vajda, P. in Handbook on the Physics and Chemistry of Rare Earths Vol. 20 (eds Gschneidner, K. A. & Eyring, L.) 207–291 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  6. Mueller, W. M., Blackledge, J. P. & Libowitz, G. G. in Metal Hydrides (eds Mueller, W. M., Blackledge, J. P. & Libowitz, G. G.) Ch. 9 & 10 (Academic, New York, 1968).

    Google Scholar 

  7. Schlapbach, L. & Gupta, M. in Hydrogen in Intermetallic Compounds (ed. Schlapbach, L.) 139–217 (Topics in Appl. Phys. Vol. 63, Springer, Berlin, 1988).

    Book  Google Scholar 

  8. Bonnet, J. E., Juckum, C. & Lucasson, A. J. Phys. F: Met. Phys. 12, 699–711 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Pebler, A. & Wallace, W. A. J. phys. Chem. 66, 148–151 (1962).

    Article  CAS  Google Scholar 

  10. Lundin, C. E. & Blackledge, J. P. J. Electrochem. Soc. 109, 838–842 (1962).

    Article  CAS  Google Scholar 

  11. Flotow, H. E., Osborne, D. W. & Otto, K. J. chem. Phys. 36, 866–872 (1962).

    Article  ADS  CAS  Google Scholar 

  12. Yannopoulos, L. N., Edwards, R. K. & Wahlbeck, P. G. J. phys. Chem. 69, 2510–2515 (1965).

    Article  CAS  Google Scholar 

  13. Alefeld, G. Ber. Bunsenges. phys. Chem. 76, 746–755 (1972).

    CAS  Google Scholar 

  14. Buccur, R. V. & Flanagan, T. B. Z. phys. Chem. 88, 225–241 (1974).

    Article  Google Scholar 

  15. Frazier, G. A. & Glosser, R. J. J. Less-Common Met. 74, 89–96 (1980).

    Article  CAS  Google Scholar 

  16. Lanford, W. A. Nuc. Instrum. Meth. 149, 1–8 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Granqvist, C. G. in Handbook of Inorganic Electrochromic Materials (ed. Granquist, C. G.) Ch. 8, 9, 11 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  18. Weaver, J. H., Rosei, R. & Peterson, D. T. Phys. Rev. B19, 4855–4866 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Peterman, D. J., Weaver, J. H. & Peterson, D. T. Phys. Rev. B23, 3903–3913 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Vajda, P. & Daou, J. N. Phys. Rev. Lett. 66, 3176–3178 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Shinar, J., Dehner, B., Barnes, R. G. & Beaudry, B. J. Phys. Rev. Lett. 64, 563–566 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Osterwalder, J. Z. Phys. B61, 113–128 (1985).

    Article  CAS  Google Scholar 

  23. Bracconi, P., Pörschke, E. & Lässer, R. Appl. Surf. Sci. 32, 392–408 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Switendick, A. C. Int. J. Quant. Chem. 5, 459–470 (1971).

    Article  Google Scholar 

  25. Dekker, J. P., van Ek, J., Lodder, A. & Huiberts, J. N. J. Phys.: Cond. Mat. 5, 4805–4816 (1993).

    ADS  CAS  Google Scholar 

  26. Wang, Y. & Chou, M. Y. Phys. Rev. Lett. 71, 1226–1229 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Halperin, B. I. & Rice, T. M. in Solid State Physics Vol. 21 (eds Seitz, F., Turnbull, D. & Ehrenreich, H.) 115–192 (Academic, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huiberts, J., Griessen, R., Rector, J. et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231–234 (1996). https://doi.org/10.1038/380231a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380231a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing