Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Humic substances as electron acceptors for microbial respiration

Abstract

HUMIC substances are heterogeneous high-molecular-weight organic materials which are ubiquitous in terrestrial and aquatic environments. They are resistant to microbial degradation1 and thus are not generally considered to be dynamically involved in microbial metabolism, especially in anoxic habitats. However, we show here that some microorganisms found in soils and sediments are able to use humic substances as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen. This electron transport yields energy to support growth. Microbial humic reduction also enhances the capacity for microorganisms to reduce other, less accessible electron acceptors, such as insoluble Fe(III) oxides, because humic substances can shuttle electrons between the humic-reducing microorganisms and the Fe(III) oxide. The finding that microorganisms can donate electrons to humic acids has important implications for the mechanisms by which microorganisms oxidize both natural and contaminant organics in anaerobic soils and sediments, and suggests a biological source of electrons for humics-mediated reduction of contaminant metals and organics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKnight, D. M. et al. in Organic Acids in Aquatic Ecosystems (eds Perdue, E. M. & Gjessing, E. T.) 223–243 (Wiley, New York, 1990).

    Google Scholar 

  2. Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Appl. environ. Microbiol. 62, 288–291 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Nature 370, 128–131 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Lovley, D. R. & Woodward, J. C. Chem. Geol. (in the press).

  5. Jackson, K. S., Jonasson, I. R. & Skippen, G. B. Earth Sci. Rev. 14, 97–146 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Alberts, J. J., Schindler, J. E., Miller, R. W. & Nutter, D. E. Science 184, 895–897 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Schindler, J. E., Williams, D. J. & Zimmerman, A. P. in Environmental Biogeochemistry Vol. 1 (eds Nriagu, J. O.) 109–115 (Ann Arbor Science, Ann Arbor, Michigan, 1976).

    Google Scholar 

  8. Schwarzenbach, R. P., Stierli, R., Lanz, K. & Zeyer, J. Environ. Sci. Technol. 24, 1566–1574 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Dunnivant, F. M., Schwarzenbach, R. P. & Macalady, D. L. Environ. Sci. Technol. 26, 2133–2142 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Curtis, C. P. & Reinhard, M. Environ. Sci. Technol. 28, 2393–2401 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Szilagyi, M. Soil Sci. 111, 233–235 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Skogerboe, R. K. & Wilson, S. A. Analyt. Chem. 53, 228–232 (1981).

    Article  CAS  Google Scholar 

  13. Kahn, T. R., Langford, C. H. & Skippen, G. B. Org. Geochem. 7, 261–266 (1984).

    Article  Google Scholar 

  14. Lovley, D. R. & Phillips, E. J. P. Appl. environ. Microbiol. 54, 1472–1480 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Caccavo, F. Jr, Blakemore, R. P. & Lovley, D. R. Appl. environ. Microbiol. 58, 3211–3216 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rossello-Mora, R. A. et al. Syst. appl. Microbiol. 17, 569–573 (1994).

    Article  Google Scholar 

  17. Tratnyek, P. G. & Macalady, D. L. J. Agricul. Food Chem. 37, 248–254 (1989).

    Article  CAS  Google Scholar 

  18. Ponnamperuma, F. N. Adv. Agron. 24, 29–96 (1972).

    Article  CAS  Google Scholar 

  19. Lovley, D. R. Adv. Agron. 54, 175–231 (1995).

    Article  CAS  Google Scholar 

  20. LaKind, J. S. & Stone, A. T. Geochim. cosmochim. Acta 53, 961–971 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Lovley, D. R., Phillips, E. J. P. & Lonergan, D. J. Environ. Sci. Technol. 25, 1062–1067 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Lovley, D. R. & Phillips, E. J. P. Appl. Environ. Microbiol. 51, 683–689 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovley, D., Coates, J., Blunt-Harris, E. et al. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996). https://doi.org/10.1038/382445a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382445a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing