Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

De novo design of structure-directing agents for the synthesis of microporous solids

Abstract

THE synthesis of microporous materials such as aluminosilicates and aluminophosphates, which are widely exploited as solid acid catalysts, ion exchangers and in gas separation, is facilitated by the use of structure-directing agents (often referred to as templates)1. These are generally organic bases, and are included in an inorganic gel medium so that the microporous framework condenses around them; the final structure of the framework reflects, to differing degrees, the shape of the template. Although there is growing confidence2 in being able to target a particular microporous structure by adroit choice of structure-directing agent3–7, no a priori method has been described for generating potential templates for either existing or hypothetical structures. Here we present a method for de novo design of template molecules, which are computationally 'grown' in the desired inorganic framework. Our method is successful in generating known templates for existing microporous materials, and a new candidate suggested by this method succeeds as a template for the target material. Our method should be generally applicable to the field of template-directed hydrothermal synthesis of crystals and to other fields of chemistry involving host–guest recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barrer, R. M. Hydrothermal Chemistry of Zeolites (Academic, London, 1992).

    Google Scholar 

  2. Davis, M. E. Chemtech 24, 22–26 (1994).

    CAS  Google Scholar 

  3. Zones, S. I. & Santilli, D. S. in 9th Int. Zeolites Conf. (eds von Ballmoos, R. et al.) 171–179 (Buuterwirj-Heinemann, Montreal, 1992).

    Google Scholar 

  4. Wright, P. A. et al. J. chem. Soc. chem. Commun. 633–635 (1993).

  5. Chen, J. & Thomas, J. M. J. chem. Soc. chem. Commun. 603–604 (1994).

  6. Schmitt, K. D. & Kennedy, G. J. Zeolites 14, 635–642 (1994).

    Article  CAS  Google Scholar 

  7. Lobo, R. F. & Davis, M. E. J. Am. chem. Soc. 117, 3766–3779 (1995).

    Article  CAS  Google Scholar 

  8. Gies, H. & Marler, B. Zeolites 12, 42–49 (1992).

    Article  CAS  Google Scholar 

  9. Gies, H. Stud. Surf. Sci. Catal. 85, 295–327 (1994).

    Article  CAS  Google Scholar 

  10. Bell, R. G. et al. in Proc. 10th Int. Zeolite Ass. Meeting (eds Weitkamp, J., Karge, H. G., Pfeifer, H. & Holderich, W.) 2075–2087 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  11. Lewis, D. W., Freeman, C. M. & Catlow, C. R. A. J. phys. Chem. 99, 11194–11202 (1995).

    Article  CAS  Google Scholar 

  12. Cox, P. A., Stevens, A. P., Banting, L. & Gorman, A. M. in Proc. 10th Int. Zeolite Ass. Meeting (eds Weigkamp, J., Karge, H. G., Pfeifer, H. & Holderich, W.) 2115–2122 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  13. Lewis, D. W., Catlow, C. R. A. & Thomas, J. M. Chem. Mater. 8, 1112–1121 (1996).

    Article  CAS  Google Scholar 

  14. Bohacek, R. S. & McMartin, C. J. J. Am. chem. Soc. 116, 5560–5571 (1994).

    Article  CAS  Google Scholar 

  15. Bohm, H. J. J. Comput.-Aided Molec. Design 6, 61–78 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Gillet, V., Johnson, A. P., Mata, P., Sike, S. & Williams, P. J. J. Comput.-Aided Molec. Design 7, 127–153 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Lewis, R. A. & Dean, P. M. Proc. R. Soc. Lond. B 236, 125–140 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Oprea, T. I., Ho, C. M. W. & Marshall, G. R. in Computer-Aided Molecular Design. Applciations in Agrochemicals, Materials and Pharmaceuticals (eds Reynolds, C. H., Holloway, M. K. & Cox, H. K.) 65–81 (American Chemical Soc., Washington DC, 1995).

    Google Scholar 

  19. Verlinde, C., Rudenko, G. & Hol, W. J. Comput.-Aided Molec. Design 6, 131–147 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Discover 2.9.7 (Molecular Simulations Inc. San Diego, 1995).

  21. Stewart, J. J. P. Quantum Chemical Program Exch. Bull. 3, 24 (1983).

    Google Scholar 

  22. McCusker, L. B. Mater. Sci. Forum 133–136, 423–434 (1993).

    Article  Google Scholar 

  23. Barratt, P. A. et al. J. chem. Soc. chem. Commun. (in the press).

  24. Price, G. D., Pluth, J. J., Smith, J. V., Araki, T. & Bennett, J. M. Nature 292, 818–819 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Navrotsky, A., Petrovic, I., Hu, Y. T., Chen, C. Y. & Davis, M. E. Microporous Mater. 4, 95–98 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, D., Willock, D., Catlow, C. et al. De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382, 604–606 (1996). https://doi.org/10.1038/382604a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382604a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing