Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit

Abstract

THE functional properties of neuronal networks can be reconfigured by a variety of modulatory neurotransmitters, which may alter the excitable properties of neurons or the strengths of synaptic connections. Many of these neuromodulators act via the intracellular second messenger cyclic AMP, but their effects on the spatial distribution of cAMP concentration have never been examined in an intact neural circuit. We therefore used the cAMP-indicator dye FICRhR (refs 1,2) to investigate the effect of several neuromodulators (octopamine, dopamine, acetylcholine, serotonin and proctolin) on cAMP distribution in identified neurons of the lobster stomatogastric ganglion (STG). When added to the bath solution, each of these neuromodulators produced a unique pattern of cAMP transients among the different neurons of the STG. Electrical stimulation of neurons innervating the STG causes synaptic release of endogenous modulators, leading within a few seconds to local increases of cAMP in fine neurite branches, the site where many modulators are thought to act3,4. After prolonged stimulation, cAMP diffuses from the site of production to throughout the neuritic tree and eventually to the cell body. Diffusion of cAMP may explain how transient localized inputs to a neuron can produce long-range effects such as long-term changes in gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, S. R., Harootunian, A. T., Buechler, Y. J., Taylor, S. S. & Tsien, R. Y. Nature 349, 694–697 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Adams, S. R., Bacskai, B. J., Taylor, S. S. & Tsien, R. Y. in Fluorescent and Luminescent Probes for Biological Activity (ed. Mason, W. T.) 133–149 (Academic, New York, 1993).

    Google Scholar 

  3. King, D. G. J. Neurocytol. 5, 239–266 (1976).

    Article  CAS  Google Scholar 

  4. Hartline, D. K. & Graubard, K. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris–Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 31–85 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  5. Johnson, B. R. & Hooper, S. L. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris–Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 1–30 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  6. Harris-Warrick, R. M., Nagy, F. & Nusbaum, M. P. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris–Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 87–137 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  7. Flamm, R. E., Fickbohm, D. & Harris-Warrick, R. M. J. Neurophysiol. 58, 1370–1386 (1987).

    Article  CAS  Google Scholar 

  8. Maynard, D. M. & Selverston, A. l. J. Comp. Physiol. 100, 161–182 (1975).

    Article  Google Scholar 

  9. Tsien, R. Y. & Bacskai, B. J. in Handbook of Biological Confocal Microscopy (ed. Pawley, J. B.) 459–477 (Plenum, New York and London, 1995).

    Book  Google Scholar 

  10. Tsien, R. Y., Bacskai, B. J. & Adams, S. R. Trends Cell Biol. 3, 242–245 (1993).

    Article  CAS  Google Scholar 

  11. Flamm, R. E. & Harris-Warrick, R. M. J. Neurophysiol. 55, 847–865 (1986).

    Article  CAS  Google Scholar 

  12. Flamm, R. E. & Harris-Warrick, R. M. J. Neurophysiol. 55, 866–881 (1986).

    Article  CAS  Google Scholar 

  13. Hooper, S. L. & Marder, E. J. Neurosci. 7, 2097–2112 (1987).

    Article  CAS  Google Scholar 

  14. Bal, T., Nagy, F. & Moulins, M. J. Neurosci. 3019–3035 (1987).

  15. Heinzel, H.-G. J. Neurophysiol. 59, 551–565 (1988).

    Article  CAS  Google Scholar 

  16. Russell, D. F. Brain Res. 177, 598–602 (1979).

    Article  CAS  Google Scholar 

  17. Bacskai, B. J. et al. Science 260, 222–226 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Brindle, P. K. & Montminy, M. R. Curr. Opin. Genet. Dev. 2, 199–204 (1992).

    Article  CAS  Google Scholar 

  19. Hagiwara, M. et al. Mol. Cell. Biol. 13, 4852–4859 (1993).

    Article  CAS  Google Scholar 

  20. Alberini, C. M., Ghirardi, M., Huang, Y. Y., Nguyen, P. V. & Kandel, E. R. Ann. NY Acad. Sci. 758, 261–286 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hempel, C., Vincent, P., Adams, S. et al. Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit. Nature 384, 166–169 (1996). https://doi.org/10.1038/384166a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384166a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing