Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum cryptography on multiuser optical fibre networks

Abstract

To establish a secure communication channel, it is necessary to distribute between two users a key which allows safe encryption and decryption of messages. But because decryption is a simple task for any key holder, it is crucial that the key remains secret during distribution. Secrecy cannot be guaranteed if distribution occurs on the basis of classical physical mechanisms, as it is impossible to know whether the key has been intercepted during transmission. Quantum cryptography1–3 provides a fundamental solution to this problem. When quantum-mechanical processes are used to establish the key, any eavesdropping during transmission leads to an unavoidable and detectable disturbance in the received key information. Quantum cryptography has been demonstrated using standard telecommunication fibres linking single pairs of users4–8, but practical implementations will require communication networks with many users9. Here I introduce a practical scheme for multi-user quantum cryptography, and demonstrate its operation on an optical fibre network. The scheme enables a single controller on the network to establish, and regularly update, a distinct secret key with each network user. These keys can then be used to securely encrypt conventional data transmissions that are broadcast on the network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bennett, C. H., Brassard, G., Breidbart, S. & Wiesner, S. Advances in Cryptology: Proceedings of Crypto ′82 (eds Chaum, D., Rivest, R. L. & Sherman, A. T.) 267–275 (Plenum, New York, 1983).

    Book  Google Scholar 

  2. Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. J. Cryptol. 5, 3–28 (1992).

    Article  Google Scholar 

  3. Ekert, A. K. Phys. Rev. Lett. 67, 661–663 (1992).

    Article  ADS  Google Scholar 

  4. Townsend, P. D. Electron. Lett. 30, 809–811 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  5. Marand, C. & Townsend, P. Opt. Lett. 20, 1695–1697 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Franson, J. D. & Jacobs, B. C. Electron. Lett. 31, 232–234 (1995).

    Article  Google Scholar 

  7. Hughes, R. J., Luther, G. G., Morgan, G. I. & Simmons, C. in Proc. 7th Rochester Conf. on Coherence and Quantum Optics (eds Eberly, J. H., Mandel, L. & Wolf, E.) 103–112 (Plenum, New York, 1996).

    Google Scholar 

  8. Muller, A., Zbinden, H. & Gisin, N. Nature 378, 449 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Townsend, P. D., Phoenix, S. J. D., Blow, K. J. & Barnett, S. M. Electron. Lett. 30, 1875–1876 (1994).

    Article  Google Scholar 

  10. Phoenix, S. J. D. & Townsend, P. D. Contemp. Phys. 36, 165–195 (1995).

    Article  ADS  Google Scholar 

  11. Ekert, A. K., Huttner, B., Palma, G. M. & Peres, A. Phys. Rev. A 50, 1047–1056 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Huttner, B. & Ekert, A. K. J. Mod. Opt. 41, 2455–2466 (1994).

    Article  ADS  Google Scholar 

  13. Lütkenhaus, N. Phys. Rev. A 54, 97–111 (1996).

    Article  ADS  Google Scholar 

  14. Bennett, C. H., Brassard, G. & Robert, J.-M. Soc. Ind. Appl. Math. J. Comp. 17, 210–229 (1988).

    Google Scholar 

  15. Bennett, C. H., Brassard, G., Crepeau, C. & Maurer, U. M. IEEE Trans. Inform. Theory 41, 1915–1923 (1995).

    Article  MathSciNet  Google Scholar 

  16. Bennett, C. H. Phys. Rev. Lett. 68, 3121–3124 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Townsend, P. D., Marand, C., Phoenix, S. J. D., Blow, K. J. & Barnett, S. M. Phil. Trans. R. Soc. Lond. A 354, 805–817 (1996).

    Article  ADS  Google Scholar 

  18. Owens, P. C. M., Rarity, J. G., Tapster, P. R., Knight, D. & Townsend, P. D. Appl. Opt. 33, 6895–6901 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Townsend, P. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997). https://doi.org/10.1038/385047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing