Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital forcing of deep-sea benthic species diversity

Abstract

Explanations for the temporal and spatial patterns of species biodiversity focus on stability–time1–3, disturbance–mosaic (biogenie microhabitat heterogeneity)4,5 and competition–predation (biotic interactions)6,7 hypotheses. The stability–time hypothesis holds that high species diversity in the deep sea and in the tropics reflects long-term climatic stability3. But the influence of climate change on deep-sea diversity has not been studied and recent evidence suggests that deep-sea environments undergo changes in climatically driven temperature8 and flux of nutrients9 and organic-carbon10 during glacial–interglacial cycles. Here we show that Pliocene (2.85–2.40 Myr) deep-sea North Atlantic benthic ostracod (Crustacea) species diversity is related to solar insolation changes caused by 41,000-yr cycles of Earth's obliquity (tilt). Temporal changes in diversity, as measured by the Shannon–Weiner index, H(S), correlate with independent climate indicators of benthic foraminiferal oxygen-isotope ratios (mainly ice volume11–13) and ostracod Mg:Ca ratios (bottom-water temperature8). During glacial periods, H(S) = 0.2–0.6, whereas during interglacials, H(S) = 1.2–1.6, which is three to four times as high. The control of deep-sea benthic diversity by cyclic climate change at timescales of 103–104 yr does not support the stability–time hypothesis because it shows that the deep sea is a temporally dynamic environment. Diversity oscillations reflect large-scale response of the benthic community to climatically driven changes in either thermohaline circulation, bottom temperature (or temperature-related factors) and food, and a coupling of benthic diversity to surface productivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanders, H. L. Am. Nat. 102, 243–282 (1968).

    Article  Google Scholar 

  2. Fischer, A. G. Evolution 14, 64–81 (1960).

    Article  Google Scholar 

  3. Hessler, R. R. & Sanders, H. L. Deep-Sea Res. 14, 65–78 (1967).

    Google Scholar 

  4. Hutchinson, G. E. Am. Nat. 93, 145–159 (1959).

    Article  Google Scholar 

  5. Grassle, J. F. & Maciolek, N. J. Am. Nat. 139, 313–341 (1992).

    Article  Google Scholar 

  6. Paine, R. T. Am. Nat. 100, 65–75 (1966).

    Article  Google Scholar 

  7. Pianka, E. M. Am. Nat. 100, 33–46 (1966).

    Article  Google Scholar 

  8. Dwyer, G. D. et al. Science 270, 1347–1351 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Boyle, E. A. & Keigwin, L. D. Science 218, 784–787 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Thomas, E., Booth, L., Maslin, M. & Shackleton, N. J. Paleoceanography 10, 545–562 (1995).

    Article  ADS  Google Scholar 

  11. Shackleton, N. J. & Opdyke, N. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  12. Raymo, M. E., Ruddiman, W. F., Backman, J., Clement, B. M. & Martinson, D. G. Paleoceanography 4, 413–446 (1989).

    Article  ADS  Google Scholar 

  13. Raymo, M. E., Hodell, D. & Jansen, E. Paleoceanography 7, 645–672 (1992).

    Article  ADS  Google Scholar 

  14. Imbrie, J. et al. Paleoceanography 7, 701–738 (1992).

    Article  ADS  Google Scholar 

  15. Shackleton, N. J. et al. Nature 307, 620–623 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Berger, A. L. Quat. Sci. Rev. 11, 571–582 (1992).

    Article  ADS  Google Scholar 

  17. Whatley, R. Application of Ostracoda (ed. Maddocks, R. F.) 51–77 (University of Houston Press, Texas, 1983).

    Google Scholar 

  18. Benson, R. H. Palaeogeogr. Palaeoclimatol, Palaeoecol. 48, 107–141 (1984).

    Article  Google Scholar 

  19. Huston, M. A. Biological Diversity (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  20. Whatley, R. C. & Coles, G. Revista Eapanola de Micropaleontologie 19, 33–97 (1987).

    Google Scholar 

  21. Cronin, T. M. Microfossils and Oceanic Environments (eds Moquilevsk, A. & Whatley, R. C.), (University of Wales, Aberystwyth, 1996).

    Google Scholar 

  22. Buzas, M. A. Taxon 21, 275–286 (1972).

    Article  Google Scholar 

  23. Imbrie, J. et al. Paleoceanography 8, 699–736 (1993).

    Article  ADS  Google Scholar 

  24. Berggren, W. A., Kent, D. V., Swisher, C. III & Aubrey, M.-P. SEPM Spec. Publ. No. 54, 129–212 (1995).

  25. Dingle, R. V. & Lord, A. R. Palaeogeogr., Palaeoclimatol., Palaeoecol. 99, 213–235 (1990).

    Article  Google Scholar 

  26. Cronin, T. M., Raymo, M. E. & Kyle, K. P. Geology 24, 695–698 (1996).

    Article  ADS  Google Scholar 

  27. Versteeg, G. Mar. Micropal. 23, 147–183 (1994).

    Article  Google Scholar 

  28. Backman, J., Pestiaux, P., Zimmerman, H. & Hermelin, O. North Atlantic Palaeoceanography (Geol. Soc. Amer. Spec. Publ. No. 21) 231–242 (1986).

    Google Scholar 

  29. Rex, M. A. et al. Nature 365, 636–639 (1993).

    Article  ADS  Google Scholar 

  30. Cronin, T. M. et al. Paleoceanography 10, 259–281 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronin, T., Raymo, M. Orbital forcing of deep-sea benthic species diversity. Nature 385, 624–627 (1997). https://doi.org/10.1038/385624a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385624a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing