Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nitride-based semiconductors for blue and green light-emitting devices

Abstract

Recent advances in fabrication technologies for the semiconducting nitrides of the group III elements have led to commercially available, high-efficiency solid-state devices that emit green and blue light. Light-emitting diodes based on these materials should find applications in flat-panel displays, and blue and ultraviolet laser diodes promise high-density optical data storage and high-resolution printing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lighting and lighting devices in The New Encyclopedia Britannica 15th Edn, Vol. 23, 29–38 (Encyclopaedia Britannica Inc., Chicago, 1986).

  2. Black, J., Lowckwood, H. & Mayburg, S. Recombination radiation in GaAs. J. Appl. Phys. 34, 178–180 (1963).

    Article  ADS  CAS  Google Scholar 

  3. Holonyak, H. Jr & Bevacqua, S. F. Coherent (visible) light emission from Ga(As1−xPx) junctions. Appl. Phys. Lett. 1, 82–83 (1962).

    Article  ADS  CAS  Google Scholar 

  4. Dupuis, R. D. An introduction to the development of the semiconductor laser. IEEE J. Quant. Electr. QE-23, 651–657 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Craford, M. G. LEDs challenge the incandescents. IEEE Circuit Devices 8, 25–29 (1992).

    Article  Google Scholar 

  6. Craford, M. G. & Steranka, F. M. Light Emitting Diodes, in Encyclopedia of Applied Physics Vol. 8, 485–514 (VCH, New York, 1994).

    Google Scholar 

  7. Akasaki, I. & Amano, H. Wide-gap column-III nitride semiconductors for UV/blue light emitting devices. J. Electrochem. Soc. 141, 2266–2271 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Morkoc, H. et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Mohammad, S. N., Salvador, A. A. & Morkoc, H. Emerging gallium nitride based devices. Proc. IEEE 83, 1306–1355 (1995).

    Article  CAS  Google Scholar 

  10. Neumayer, D. A. & Ekerdt, J. G. Growth of group III nitrides: A review of precursors and techniques. Chem. Mater. 8, 9–25 (1996).

    Article  CAS  Google Scholar 

  11. Nakamura, S. et al. InGaN-based multi-quantum-well structure laser diodes. Jpn. J. Appl. Phys. 35, L74–L76 (1996).

    Article  CAS  Google Scholar 

  12. Nakamura, S. Characteristics of InGaN multi-quantum-well-structure laser diodes. Mater. Res. Soc. Proc. 449, 1135–1142 (1996).

    Article  Google Scholar 

  13. Kuo, C. P., Fletcher, R. M., Osentowski, T. D., Lardizabal, M. C. & Craford, M. G. High performance AlGalnP visible light-emitting diodes. Appl. Phys. Lett. 57, 2937–2939 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Fichter, F. Über Aluminiumnitrid. Z. Anorg. Chem. 54, 322–327 (1907).

    Article  CAS  Google Scholar 

  15. Lirmann, J. V. & Schdanov, H. S. The crystalline structure of GaN. Acta Physicochim. URSS 6, 306 (1937).

    Google Scholar 

  16. Maruska, H. P. & Tietjen, J. J. The preparation and properties of vapor-deposited single-crystalline GaN. Appl. Phys. Lett. 15, 327–329 (1969).

    Article  ADS  CAS  Google Scholar 

  17. Pankove, J. I., Miller, E. A. & Berkeyheiser, J. E. GaN electroluminescent diodes. RCA Rev. 32, 383–392 (1971).

    CAS  Google Scholar 

  18. Manasevit, H. M. Erdmann, F. M. & Simpson, W. I. The use of metalorganics in the preparation of semiconductor materials. J. Electrochem. Soc. 118, 1864–1868 (1971).

    Article  CAS  Google Scholar 

  19. Dingle, R., Shaklee, K. L., Leheny, R. F. & Zetterstrom, R. B. Stimulated emission and laser action in gallium nitride. Appl. Phys. Lett. 19, 5–7 (1971).

    Article  ADS  CAS  Google Scholar 

  20. Yoshida, S., Misawa, S. & Gonda, S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substates. Appl. Phys. Lett. 42, 427–429 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Chang, C.-A., Takaoka, H., Chang, L. L. & Esaki, L. Molecular beam epitaxy of AlSb. Appl. Phys. Lett. 40, 983–985 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Wang, W. I. Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100). Appl. Phys. Lett. 44, 1149–1151 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Johnson, N. M., Burnham, R. D., Street, R. A. & Thornton, R. L. Hydrogen passivation of shallow-acceptor impurities in p-type GaAs. Phys. Rev. B 33, 1102–1105 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Antell, G. R. et al. Passivation of zinc acceptors in InP by atomic hydrogen coming from arsine during metalorganic vapor phase epitaxy. Appl. Phys. Lett. 53, 758–760 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Nakamura, S., Mukai, T., Senoh, M. & Iwasa, N. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31, L139–L142 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Akasaki, I., Amano, H., Itoh, K., Koide, N. & Manabe, K. GaN-based ultraviolet/blue light emitting devices. Inst. Phys. Conf. Ser. 129, 851–856 (1992).

    Google Scholar 

  29. Nakamura, S., Mukai, T., Senoh, M., Nagahama, S. & Iwasa, N. InxGa1−xN/InyGa1−yN superlattices grown on GaN films. J. Appl. Phys. 74, 3911–3915 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    Article  ADS  CAS  Google Scholar 

  31. Nakamura, S., Mukai, T. & Senoh, M. High-brightness InGaN/AlGaN double heterostructure blue-green light-emitting diodes. J. Appl. Phys. 76, 8189–8191 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Lester, S. D., Ponce, F. A., Craford, M. G. & Steigerwald, D. A. High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249–1251 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Nakamura, S., Senoh, M., Iwasa, N. & Nagahama, S. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. 34, L797–L799 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada T. & Mukai, T. Superbright green InGaN SQW structure LEDs. Jpn. J. Appl. Phys. 34, L1332–L1335 (1995).

    Article  CAS  Google Scholar 

  35. Ponce, F. A., Major, J. S. Jr, Plano, W. E. & Welch, D. F. Crystalline structure of AlGaN epitaxy on sapphire using A1N buffer layers. Appl. Phys. Lett. 65, 2302–2304 (1994).

    Article  ADS  CAS  Google Scholar 

  36. Ponce, F. A., Bour, D. P., Götz, W. & Wright, P. J. Spatial distribution of the luminescence in GaN thin films. Appl. Phys. Lett. 68, 57–59 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30, L1705–L1707 (1991).

    Article  ADS  Google Scholar 

  38. Ponce, F. A., Krusor, B. S., Major, J. S. Jr, Plano, W. E. & Welch, D. F. Microstructure of GaN epitaxy on SiC using AlN buffer layers. Appl. Phys. Lett. 67, 410–412 (1995).

    Article  ADS  CAS  Google Scholar 

  39. Ponce, F. A., Van de Walk, C. G. & Northrup, J. E. Atomic arrangement at the AlN/SiC interface. Phys. Rev. B 53, 7473–7478 (1996).

    Article  ADS  CAS  Google Scholar 

  40. Ponce, F. A. et al. Homoepitaxy of GaN on polished bulk single crystals by metalorganic chemical vapor deposition. Appl. Phys. Lett. 68, 917–919 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Amano, H., Asahi, T. & Akasaki, I. Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29, L205–L206 (1990).

    Article  ADS  CAS  Google Scholar 

  42. Zubrilov, A. S. et al. Spontaneous and stimulated emission from photopumped GaN grown on SiC. Appl. Phys. Lett. 67, 533–535 (1995).

    Article  ADS  CAS  Google Scholar 

  43. Khan, M. A., Krishnankutty, S., Skogman, R. A., Kuznia, J. N. & Olson, D. T. Vertical-cavity stimulated emission from photopumped InGaN/GaN heterojunctions at room temperature. Appl. Phys. Lett. 65, 520–521 (1994).

    Article  ADS  CAS  Google Scholar 

  44. Kim, S. T., Amano, H. & Akasaki, I. Surface-mode stimulated emission from optically pumped GalnN at room temperature. Appl. Phys. Lett. 67, 267–269 (1995).

    Article  ADS  CAS  Google Scholar 

  45. Amano, H. et al. Room-temperature violet stimulated emission from optically pumped AlGaN/GalnN double heterostructure. Appl. Phys. Lett. 64, 1377–1379 (1994).

    Article  ADS  CAS  Google Scholar 

  46. Aggarwal, R. L, Maki, P. A., Molnar, R. J., Liau, Z.-L. & MeIngailis, I. Optically pumped GaN/AlGaN double heterostructure ultraviolet laser. J. Appl. Phys. 79, 2148–2150 (1996).

    Article  ADS  CAS  Google Scholar 

  47. Nakamura, S. et al. InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets. Jpn. J. Appl. Phys. 35, L217–L219 (1996).

    Article  CAS  Google Scholar 

  48. Nakamura, S. et al. Ridge-geometry InGaN multi-quantum-well-structure laser diodes. Appl. Phys. Lett. 69, 1477–1479 (1996).

    Article  ADS  CAS  Google Scholar 

  49. Akasaki, I. et al. Shortest wavelength semiconductor laser diode. Electron. Lett. 32, 1105–1106 (1996).

    Article  CAS  Google Scholar 

  50. Itaya, K. et al. Room temperature pulsed operation of nitride based multi-quantum-well laser diodes with cleaved facets on conventional c-face sapphire substrates. Jpn. J. Appl. Phys. 35, L1315–L1317 (1996).

    Article  CAS  Google Scholar 

  51. Matsumoto T. & Aoki, M. Temperature dependence of photoluminescence from GaN. Jpn. J. Appl. Phys. 13, 1804–1807 (1974).

    Article  ADS  CAS  Google Scholar 

  52. Akasaki, I. & Hayashi, I. Research on blue emitting devices. Ind. Sci. Technol. 17, 48–52 (1976) (in Japanese).

    Google Scholar 

  53. Yoshida, S., Misawa, S. & Itoh, A. Epitaxial growth of aluminum nitride films on sapphire by reactive evaporation. Appl. Phys. Lett. 26, 461–462 (1975).

    Article  ADS  CAS  Google Scholar 

  54. Karpinski, J., Porowski, S. & Miotkowska, S. High pressure vapor growth of GaN. J. Cryst. Growth 56, 77–82 (1982).

    Article  ADS  CAS  Google Scholar 

  55. Nagamoto, T., Kuboyama, T., Minamino, H. & Omoto, O. Properties of Ga1−xInxN films prepared by MOVPE. Jpn. J. Appl. Phys. 28, L1334–L1336 (1989).

    Article  ADS  Google Scholar 

  56. Nakamura, S. & Mukai, T. High-quality InGaN films grown on GaN films. Jpn. J. Appl. Phys. 31, L1457–L1459 (1992).

    Article  ADS  CAS  Google Scholar 

  57. Hunt, R. W. G. Measuring Colour 1–313 (Ellis Horwood, London, 1995).

    Google Scholar 

  58. Wicks, G. W. The colour of light. Compound Semiconductor 1, 39–40 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce, F., Bour, D. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997). https://doi.org/10.1038/386351a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/386351a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing