Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of p53 stability by Mdm2

Abstract

The tumour-suppressor p53 is a short-lived protein that is maintained at low, often undetectable, levels in normal cells. Stabilization of the protein in response to an activating signal, such as DNA damage, results in a rapid rise in p53 levels and subsequent inhibition of cell growth1. Tight regulation of p53 function is critical for normal cell growth and development, and one mechanism by which p53 function is controlled is through interaction with the Mdm2 protein2–4. Mdm2 inhibits p53 cell-cycle arrest and apoptic functions5,6 and we show here that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation. Endogenous levels of Mdm2 are sufficient to regulate p53 stability, and overexpres-sion of Mdm2 can reduce the amount of endogenous p53. Because mdm2 is transcriptionally activated by p53 (refs 7, 8), this degradative pathway may contribute to the maintenance of low p53 concentrations in normal cells. Furthermore, mechanisms regulating the Mdm2-induced degradation of p53 may play a role in controlling the extent and duration of the p53 response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bates, S. & Vousden, K. H. p53 in signalling checkpoint arrest or apoptosis. Current Opin. Genet. Dev. 6, 1–7 (1996).

    Article  Google Scholar 

  2. Barak, Y. & Oren, M. Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 11, 2115–2121 (1992).

    Article  CAS  Google Scholar 

  3. Momand, J., Zambetti, G. P., George, D. L. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).

    Article  CAS  Google Scholar 

  4. Chen, J. D., Marechal, V. & Levine, A. J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13, 4107–4114 (1993).

    Article  CAS  Google Scholar 

  5. Haupt, Y., Barak, Y. & Oren, M. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 15, 1596–1606 (1996).

    Article  CAS  Google Scholar 

  6. Chen, J., Wu, X., Lin, J. & Levine, A. J. mdm-2 inhibits the Gl arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16, 2445–2452 (1996).

    Article  CAS  Google Scholar 

  7. Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm-2 expression is induced by wild type p53 activity. EMBO J. 12,461–468 (1993).

    Article  CAS  Google Scholar 

  8. Wu, X. W., Bayle, J. H., Olson, D. & Levine, A. J. The p53 mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132(1993).

    Article  CAS  Google Scholar 

  9. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by absence of p53. Nature 378, 203–206 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embyonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Xiao, Z.-X. et al. Interaction between the retinoblasmoma protein and the oncoprotein MDM2. Nature 375, 694–697 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Martin, K. et al. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375, 691–694 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Marston, N. J., Crook, T. & Vousden, K. H. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. Oncogene 9, 2707–2716 (1994).

    CAS  Google Scholar 

  14. Lin, J., Chen, J., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  15. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E. & Anderson, C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049 (1992).

    Article  CAS  Google Scholar 

  16. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  Google Scholar 

  17. Hubbert, N. L., Sedman, S. A. & Schiller, J. T. Human papillomavirus type 16 E6 increases the degradatin rate of p53 in human keratinocytes. J. Virol. 66, 6237–6241 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones, S. N. et al. The tumorigenic potential and cell growth characteristics of p53-deficient cells are equivalent in the presence or absence of Mdm2. Proc. Natl Acad. Sci. USA 93, 14106–14111 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Wrede, D., Tidy, J. A., Crook, T., Lane, D. & Vousden, K. H. Expression of RB and p53 proteins in HPV-positive and HPV-negative cervical carcinoma cell lines. Mol. Carcinog. 4, 171–175 (1991).

    Article  CAS  Google Scholar 

  20. Maki, C. G., Huibregtse, J. & Howley, P. M. In vivo ubiquitination and proteosome-mediated degradation of p53. Cancer Res. 56, 2649–2654 (1996).

    CAS  PubMed  Google Scholar 

  21. Kubbutat, M. H. G. & Vousden, K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell Biol 17, 460–468 (1997).

    Article  CAS  Google Scholar 

  22. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacytin. Science 268, 726–731 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857–860 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent Gl arrest and long-term induction of Cipl in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  CAS  Google Scholar 

  26. Perry, M. E., Piette, J., Zawadzki, J. A., Harvey, D. & Levine, A. J. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl Acad. Sci. USA 90, 11623–11627 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Chen, C. Y. et al. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. Natl Acad. Sci. USA 91, 2684–2688 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Marston, N. J. Mutational Analysis of the Tumour Suppressor Protein p53. Thesis, Univ. London (1996).

    Google Scholar 

  29. Marston, N. J., Jenkins, J. R. & Vousden, K. H. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10, 1707–1715 (1995).

    Google Scholar 

  30. Rowan, S. et al. Specific loss of apoptotic but not cell cycle arrest function in a human tumour derived p53 mutant. EMBO J. 15, 827–838 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubbutat, M., Jones, S. & Vousden, K. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997). https://doi.org/10.1038/387299a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387299a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing