Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insulin signalling and the regulation of glucose and lipid metabolism

Abstract

The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The regulation of metabolism by insulin.
Figure 2: Signal transduction in insulin action.
Figure 3: The regulation of glucose metabolism in the liver.
Figure 4: Cross-talk between tissues in the regulation of glucose metabolism.

Similar content being viewed by others

References

  1. Klip, A. & Paquet, M. R. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13, 228–243 (1990).

    CAS  PubMed  Google Scholar 

  2. Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    CAS  PubMed  Google Scholar 

  3. Abel, E. D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001).

    ADS  CAS  PubMed  Google Scholar 

  4. Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    CAS  PubMed  Google Scholar 

  6. Patti, M. E. & Kahn, C. R. The insulin receptor—a critical link in glucose homeostasis and insulin action. J. Basic Clin. Physiol. Pharmacol. 9, 89–109 (1998).

    CAS  PubMed  Google Scholar 

  7. Butler, A. A. & LeRoith, D. Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology 142, 1685–1688 (2001).

    CAS  PubMed  Google Scholar 

  8. Skorokhod, A. et al. Origin of insulin receptor-like tyrosine kinases in marine sponges. Biol. Bull. 197, 198–206 (1999).

    CAS  PubMed  Google Scholar 

  9. White, M. F. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182, 3–11 (1998).

    CAS  PubMed  Google Scholar 

  10. Pessin, J. E. & Saltiel, A. R. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 106, 165–169 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    ADS  CAS  PubMed  Google Scholar 

  12. Araki, E. et al. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186–190 (1994).

    ADS  CAS  PubMed  Google Scholar 

  13. Kido, Y. et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J. Clin. Invest. 105, 199–205 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Withers, D. J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    ADS  CAS  PubMed  Google Scholar 

  15. Fantin, V. R., Wang, Q., Lienhard, G. E. & Keller, S. R. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 278, E127–E133 (2000).

    CAS  PubMed  Google Scholar 

  16. Fasshauer, M. et al. Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol. Cell. Biol. 21, 319–329 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mendez, R., Myers, M. G. Jr, White, M. F. & Rhoads, R. E. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol. Cell. Biol. 16, 2857–2864 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsuruzoe, K., Emkey, R., Kriauciunas, K. M., Ueki, K. & Kahn, C. R. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol. Cell. Biol. 21, 26–38 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    ADS  CAS  PubMed  Google Scholar 

  20. Craparo, A., Freund, R. & Gustafson, T. A. 14-3-3 (ɛ) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J. Biol. Chem. 272, 11663–11669 (1997).

    CAS  PubMed  Google Scholar 

  21. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    ADS  CAS  PubMed  Google Scholar 

  22. Kim, J. K. et al. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest. 108, 437–446 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    ADS  CAS  PubMed  Google Scholar 

  24. Shepherd, P. R., Nave, B. T. & Siddle, K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem. J. 305, 25–28 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Myers, M. G. Jr et al. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl Acad. Sci. USA 89, 10350–10354 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pons, S. et al. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol. Cell. Biol. 15, 4453–4465 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Antonetti, D. A., Algenstaedt, P. & Kahn, C. R. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol. Cell. Biol. 16, 2195–2203 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fruman, D. A., Cantley, L. C. & Carpenter, C. L. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics 37, 113–121 (1996).

    CAS  PubMed  Google Scholar 

  29. Kerouz, N. J., Horsch, D., Pons, S. & Kahn, C. R. Differential regulation of insulin receptor substrates-1 and-2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J. Clin. Invest. 100, 3164–3172 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nature Genet. 26, 379–382 (2000).

    CAS  PubMed  Google Scholar 

  31. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nature Genet. 21, 230–235 (1999).

    CAS  PubMed  Google Scholar 

  32. Lietzke, S. E. et al. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol. Cell 6, 385–394 (2000).

    CAS  PubMed  Google Scholar 

  33. Kessler, A., Uphues, I., Ouwens, D. M., Till, M. & Eckel, J. Diversification of cardiac insulin signaling involves the p85 alpha/beta subunits of phosphatidylinositol 3-kinase. Am. J. Physiol. Endocrinol. Metab. 280, E65–E74 (2001).

    CAS  PubMed  Google Scholar 

  34. Peterson, R. T. & Schreiber, S. L. Kinase phosphorylation: keeping it all in the family. Curr. Biol. 9, R521–R524 (1999).

    CAS  PubMed  Google Scholar 

  35. Mackay, D. J. & Hall, A. Rho GTPases. J. Biol. Chem. 273, 20685–20688 (1998).

    CAS  PubMed  Google Scholar 

  36. Ziegler, S. F., Bird, T. A., Schneringer, J. A., Schooley, K. A. & Baum, P. R. Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta. Oncogene 8, 663–670 (1993).

    CAS  PubMed  Google Scholar 

  37. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7, 261–269 (1997).

    CAS  PubMed  Google Scholar 

  38. Cross, D. A. et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303, 21–26 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakae, J., Park, B. C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    CAS  PubMed  Google Scholar 

  40. Brady, M. J., Bourbonais, F. J. & Saltiel, A. R. The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-L1 cells. J. Biol. Chem. 273, 14063–14066 (1998).

    CAS  PubMed  Google Scholar 

  41. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    ADS  CAS  PubMed  Google Scholar 

  42. Standaert, M. L. et al. Protein kinase C-ζ as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J. Biol. Chem. 272, 30075–30082 (1997).

    CAS  PubMed  Google Scholar 

  43. Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2, 887–893 (1998).

    CAS  PubMed  Google Scholar 

  44. Wada, T. et al. Role of the Src homology 2 (SH2) domain and C-terminus tyrosine phosphorylation sites of SH2-containing inositol phosphatase (SHIP) in the regulation of insulin-induced mitogenesis. Endocrinology 140, 4585–4594 (1999).

    CAS  PubMed  Google Scholar 

  45. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    ADS  CAS  PubMed  Google Scholar 

  46. Ribon, V. & Saltiel, A. R. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem. J. 324, 839–845 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribon, V., Herrera, R., Kay, B. K. & Saltiel, A. R. A role for CAP, a novel, multifunctional Src homology 3 domain-containing protein in formation of actin stress fibers and focal adhesions. J. Biol. Chem. 273, 4073–4080 (1998).

    CAS  PubMed  Google Scholar 

  48. Ribon, V., Johnson, J. H., Camp, H. S. & Saltiel, A. R. Thiazolidinediones and insulin resistance: peroxisome proliferator activated receptor gamma activation stimulates expression of the CAP gene. Proc. Natl Acad. Sci. USA 95, 14751–14756 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kimura, A., Baumann, C. A., Chiang, S. H. & Saltiel, A. R. The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc. Natl Acad. Sci. USA 98, 9098–9103 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baumann, C. A. et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202–207 (2000).

    ADS  CAS  PubMed  Google Scholar 

  51. Chiang, S. H. et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948 (2001).

    ADS  CAS  PubMed  Google Scholar 

  52. Watson, R. T. et al. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J. Cell Biol. 154, 829–840 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Boulton, T. G. et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675 (1991).

    CAS  PubMed  Google Scholar 

  54. Lazar, D. F. et al. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J. Biol. Chem. 270, 20801–20807 (1995).

    CAS  PubMed  Google Scholar 

  55. Raught, B., Gingras, A. C. & Sonenberg, N. The target of rapamycin (TOR) proteins. Proc. Natl Acad. Sci. USA 98, 7037–7044 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R. & Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344, 427–431 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas, G. & Hall, M. N. TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9, 782–787 (1997).

    CAS  PubMed  Google Scholar 

  58. Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biol. 3, 596–601 (2001).

    CAS  PubMed  Google Scholar 

  59. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    ADS  CAS  PubMed  Google Scholar 

  60. Brady, M. J., Nairn, A. C. & Saltiel, A. R. The regulation of glycogen synthase by protein phosphatase 1 in 3T3-L1 adipocytes. Evidence for a potential role for DARPP-32 in insulin action. J. Biol. Chem. 272, 29698–29703 (1997).

    CAS  PubMed  Google Scholar 

  61. Newgard, C. B., Brady, M. J., O'Doherty, R. M. & Saltiel, A. R. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 49, 1967–1977 (2000).

    CAS  PubMed  Google Scholar 

  62. Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    CAS  PubMed  Google Scholar 

  63. Bergman, R. N. & Ader, M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab. 11, 351–356 (2000).

    CAS  PubMed  Google Scholar 

  64. Bergman, R. N. New concepts in extracellular signaling for insulin action: the single gateway hypothesis. Recent Prog. Horm. Res. 52, 359–385 (1997).

    CAS  PubMed  Google Scholar 

  65. Pilkis, S. J. & Granner, D. K. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 54, 885–909 (1992).

    CAS  PubMed  Google Scholar 

  66. Sutherland, C., O'Brien, R. M. & Granner, D. K. New connections in the regulation of PEPCK gene expression by insulin. Phil. Trans. R. Soc. Lond. B 351, 191–199 (1996).

    ADS  CAS  Google Scholar 

  67. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    ADS  CAS  PubMed  Google Scholar 

  68. Shimomura, I. et al. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl Acad. Sci. USA 96, 13656–13661 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Foretz, M. et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol. 19, 3760–3768 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimomura, I. et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell 6, 77–86 (2000).

    CAS  PubMed  Google Scholar 

  71. Anthonsen, M. W., Ronnstrand, L., Wernstedt, C., Degerman, E. & Holm, C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J. Biol. Chem. 273, 215–221 (1998).

    CAS  PubMed  Google Scholar 

  72. Kitamura, T. et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell. Biol. 19, 6286–6296 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cusi, K. et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest. 105, 311–320 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Taylor, S. I. & Arioglu, E. Syndromes associated with insulin resistance and acanthosis nigricans. J. Basic Clin. Physiol. Pharmacol. 9, 419–439 (1998).

    CAS  PubMed  Google Scholar 

  75. Stern, M. P. Strategies and prospects for finding insulin resistance genes. J. Clin. Invest. 106, 323–327 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bruning, J. C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).

    CAS  PubMed  Google Scholar 

  77. Terauchi, Y. et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and β cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J. Clin. Invest. 99, 861–866 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kulkarni, R. N. et al. Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J. Clin. Invest. 104, R69–R75 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    ADS  CAS  PubMed  Google Scholar 

  80. Zisman, A. et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nature Med. 6, 924–928 (2000).

    CAS  PubMed  Google Scholar 

  81. Katz, E. B., Stenbit, A. E., Hatton, K., DePinho, R. & Charron, M. J. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377, 151–155 (1995).

    ADS  CAS  PubMed  Google Scholar 

  82. Kim, J. K. et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J. Clin. Invest. 105, 1791–1797 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hwang, J. H., Pan, J. W., Heydari, S., Hetherington, H. P. & Stein, D. T. Regional differences in intramyocellular lipids in humans observed by in vivo 1H-MR spectroscopic imaging. J. Appl. Physiol. 90, 1267–1274 (2001).

    CAS  PubMed  Google Scholar 

  85. Kim, J. K. et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl Acad. Sci. USA 98, 7522–7527 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ventre, J. et al. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes 46, 1526–1531 (1997).

    CAS  PubMed  Google Scholar 

  87. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M., Taylor, R. Effects of an engineered human anti-TNF-alpha antibody (SDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).

    PubMed  Google Scholar 

  88. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    ADS  CAS  PubMed  Google Scholar 

  89. Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    ADS  CAS  PubMed  Google Scholar 

  90. Lee, Y. et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 276, 5629–5635 (2001).

    CAS  PubMed  Google Scholar 

  91. Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  93. Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 7, 947–953 (2001).

    CAS  PubMed  Google Scholar 

  94. Vionnet, N. et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. 67, 1470–1480 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Steppan, C. M. et al. A family of tissue-specific resistin-like molecules. Proc. Natl Acad. Sci. USA 98, 502–506 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nagaev, I. & Smith, U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem. Biophys. Res. Commun. 285, 561–564 (2001).

    CAS  PubMed  Google Scholar 

  97. Accili, D., Nakae, J., Kim, J. J., Park, B. C. & Rother, K. I. Targeted gene mutations define the roles of insulin and IGF-I receptors in mouse embryonic development. J. Pediatr. Endocrinol. Metab. 12, 475–485 (1999).

    CAS  PubMed  Google Scholar 

  98. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    CAS  PubMed  Google Scholar 

  99. Pessin, J. E., Thurmond, D. C., Elmendorf, J. S., Coker, K. J. & Okada, S. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J. Biol. Chem. 274, 2593–2596 (1999).

    CAS  PubMed  Google Scholar 

  100. Guilherme, A. et al. Perinuclear localization and insulin responsiveness of GLUT4 requires cytoskeletal integrity in 3T3-L1 adipocytes. J. Biol. Chem. 275, 38151–38159 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many investigators whose work we could not cite owing to a limit on the number of references.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltiel, A., Kahn, C. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001). https://doi.org/10.1038/414799a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/414799a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing