Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex

Abstract

Chaperonins assist protein folding with the consumption of ATP. They exist as multi-subunit protein assemblies comprising rings of subunits stacked back to back. In Escherichia coli, asymmetric intermediates of GroEL are formed with the co-chaperonin GroES and nucleotides bound only to one of the seven-subunit rings (the cis ring) and not to the opposing ring (the trans ring). The structure of the GroEL–GroES–(ADP)7 complex reveals how large en bloc movements of the cis ring's intermediate and apical domains enable bound GroES to stabilize a folding chamber with ADP confined to the cis ring. Elevation and twist of the apical domains double the volume of the central cavity and bury hydrophobic peptide-binding residues in the interface with GroES, as well as between GroEL subunits, leaving a hydrophilic cavity lining that is conducive to protein folding. An inward tilt of the cis equatorial domain causes an outward tilt in the trans ring that opposes the binding of a second GroES. When combined with new functional results, this negative allosteric mechanism suggests a model for an ATP-driven folding cycle that requires a double toroid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall architecture and dimensions of the GroEL–GroES complex.
Figure 2: The components of the GroEL–GroES complex.
Figure 3: The components of the GroEL–GroES complex.
Figure 4: The components of the GroEL–GroES complex.
Figure 5: The components of the GroEL–GroES complex.
Figure 6: Nucleotide-binding site in the cis ring of the GroEL–GroES complex.
Figure 7: Nucleotide-binding site in the cis ring of the GroEL–GroES complex.
Figure 8: Nucleotide-binding site in the cis ring of the GroEL–GroES complex.
Figure 9: Inter-subunit contacts in the cis ring of the GroEL–GroES complex.
Figure 10: Inter-subunit contacts in the cis ring of the GroEL–GroES complex.
Figure 11: Inter-subunit contacts in the cis ring of the GroEL–GroES complex.
Figure 12: The change in the central cavity.
Figure 13: The change in the central cavity.
Figure 14: The change in the central cavity.
Figure 15: Schematic (exaggerated) representation of the en bloc tilt of the equatorial domains and the subsequent deformation of the equato.

Similar content being viewed by others

References

  1. Ellis, R. J. (ed.) The Chaperonins(Academic, San Diego, (1996)).

    Google Scholar 

  2. Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Fenton, W. A. & Horwich, A. L. GroEL-mediated protein folding. Protein Sci. 6, 743–760 (1997).

    Article  CAS  Google Scholar 

  4. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Goloubinoff, P., Christeller, J. T., Gatebgy,A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884–889 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Buchner, J.et al. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591 (1991).

    Article  CAS  Google Scholar 

  7. Martin, J.et al. Chaperonin-mediated protein folding at the surface of GroEL through a ‘molten globule’-like intermediate. Nature 352, 36–42 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Cheng, M. Y.et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Fayet O., Ziegelhoffer, T. & Georgopoulos, C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379–1385 (1989).

    Article  CAS  Google Scholar 

  10. Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N. & Furtak, K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917 (1993).

    Article  CAS  Google Scholar 

  11. Braig, K.et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 å. Nature 371, 578–586 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Fenton, W. A., Kashi, Y., Furtak, K. & Horwich, A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Hlodan, R., Tempst, P. & Hartl, F. U. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Nature Struct. Biol. 2, 587–595 (1995).

    Article  CAS  Google Scholar 

  14. Lin, S., Schwarz, F. P. & Eisenstein, E. The hydrophobic nature of GroEL-substrate binding. J. Biol. Chem. 270, 1011–1014 (1995).

    Article  CAS  Google Scholar 

  15. Itzhaki, L. S., Otzen, D. E. & Fersht, A. R. Nature and consequences of GroEL-protein interactions. Biochemistry 34, 14581–14587 (1995).

    Article  CAS  Google Scholar 

  16. Weissman, J. S., Kashi, Y., Fenton, W. A. & Horwich, A. L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994).

    Article  CAS  Google Scholar 

  17. Ranson, N. A., Dunster, N. J., Burston, S. G. & Clarke, A. R. Chaperonins can catalyze the reversal of early aggregation steps when a protein misfolds. J. Mol. Biol. 250, 581–586 (1995).

    Article  CAS  Google Scholar 

  18. Zahn, R., Perrett, S., Stenberg, G. & Fersht, A. T. Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science 271, 642–645 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Walter, S., Lorimer, G. H. & Schmid, F. X. Athermodynamic coupling mechanism for GroEL-mediated unfolding. Proc. Natl Acad. Sci. USA 93, 9425–9430 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Weissman, J. S.et al. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83, 577–587 (1995).

    Article  CAS  Google Scholar 

  21. Mayhew, M.et al. Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379, 420–426 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Weissman, J. S., Rye, H. S., Fenton, W. A., Beechem, J. M. & Horwich, A. L. Characterization of the active intermediate of a GroEL–GroES-mediated protein folding reaction. Cell 84, 481–490 (1996).

    Article  CAS  Google Scholar 

  23. Roseman, A. M., Chen, S., White, H., Braig, K. & Sabil, H. R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251 (1996).

    Article  CAS  Google Scholar 

  24. Yifrach, O. & Horovitz, A. Allosteric control by ATP of non-folded protein binding to GroEL. J. Mol. Biol. 255, 356–361 (1996).

    Article  CAS  Google Scholar 

  25. Gray, T. E. & Fersht, A. R. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett 292, 254–258 (1991); erratum, FEBS Lett. 310, 99 (1992).

    Google Scholar 

  26. Bochkareva, E. S., Lissin, N. M., Flynn, G. C., Rothman, J. E. & Girshovich, A. S. Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267, 6796–6800 (1992).

    CAS  PubMed  Google Scholar 

  27. Yifrach, O. & Horovitz, A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemisty 34, 5303–5308 (1995).

    Article  CAS  Google Scholar 

  28. Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L. & Sigler, P. B. The 2.4 å crystal structure of the bacterial chaperonin GroEL complexed with ATP-γS. Nature Struct. Biol. 3, 170–177 (1996).

    Article  CAS  Google Scholar 

  29. Jackson, G. S.et al. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry 32, 2554–2563 (1993).

    Article  CAS  Google Scholar 

  30. Todd, M. J., Viitanen, P. V. & Lorimer, G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659–666 (1994).

    Article  ADS  CAS  Google Scholar 

  31. Todd, M. J., Lorimer, G. H. & Thirumalai, D. Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc. Natl Acad. Sci. USA 93, 4030–4035 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Ranson, N. A., Burston, S. G. & Clarke, A. R. Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J. Mol. Biol. 266, 656–664 (1997).

    Article  CAS  Google Scholar 

  33. Taguchi, H. & Yoshida, M. Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin. FEBS Lett. 359, 195–198 (1995).

    Article  CAS  Google Scholar 

  34. Smith, K. E. & Fisher, M. T. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. J. Biol. Chem. 270, 21517–21523 (1995).

    Article  CAS  Google Scholar 

  35. Burston, S. G., Weissman, J. S., Farr, G. W., Fenton, W. A. & Horwich, A. L. Release of both native and non-native proteins from a cis-only GroEL ternary complex. Nature 383, 96–99 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Saibil, H. R., Dong, Z., Wood, S. & auf der Mauer, A. Binding of chaperonins. Nature 353, 25–26 (1991).

    Article  ADS  CAS  Google Scholar 

  37. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Hartl, F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  Google Scholar 

  38. Ishii, N., Taguchi, H., Sumi, M. & Yoshida, M. Structure of holo-chaperonin studied with electron microscopy. FEBS Lett. 299, 169–174 (1992).

    Article  CAS  Google Scholar 

  39. Chen, S.et al. Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy. Nature 371, 261–264 (1994).

    Article  ADS  CAS  Google Scholar 

  40. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L. & Deisenhofer, J. The crystal structure of the GroES co-chaperonin at 2.8 å resolution. Nature 379, 37–45 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Buckle, A. M., Zahn, R. & Fersht, A. R. Astructural model for GroEL-polypeptide recognition. Proc. Natl Acad. Sci. USA 94, 3571–3575 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Rye, H. S.et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798 (1997).

    Article  ADS  CAS  Google Scholar 

  43. Landry, S. J., Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C. & Gierasch, L. M. Characterization of a functionally important mobile domain of GroES. Nature 364, 255–258 (1993).

    Article  ADS  CAS  Google Scholar 

  44. Landry, S. J., Taher, A., Georgopoulos, C. & Van Der Vies, S. M. Interplay of structure and disorder in cochaperonin mobile loops. Proc. Natl Acad. Sci. USA 93, 11622–11627 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Zeilstra-Ryalls, J., Fayet, O. & Georgopoulos, C. Two classes of extragenic suppressor mutations identify functionally distinct regions of the GroEL chaperone of Escherichia coli. J. Bacteriol. 176, 6558–6565 (1994).

    Article  CAS  Google Scholar 

  46. Murai, N., Makino, Y. & Yoshida, M. GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps. J. Biol. Chem. 271, 28229–28234 (1996).

    Article  CAS  Google Scholar 

  47. Chandrasekhar, G. N., Tilly, K., Woolford, C., Hendrix, R. & Georgopoulos, C. Purification and properties of the GroES morphogenetic protein of Escherichia coli. J. Biol. Chem. 261, 12414–12419 (1986).

    CAS  PubMed  Google Scholar 

  48. Thiyagarajan, P., Henderson, S. J. & Joachimiak, A. Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering. Structure 4, 79–88 (1996).

    Article  CAS  Google Scholar 

  49. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  51. Brunger, A. T. X-PLOR Version 3.1 Manual 1 (Yale University, New Haven, (1993)).

    Google Scholar 

  52. Braig, K., Adams, P. D. & Brunger, A. T. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 å resolution. Nature Struct. Biol. 2, 1083–1094 (1995).

    Article  CAS  Google Scholar 

  53. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  54. Jones, T. A. in Molecular replacement(ed. Dodson, E.) 91–105 (SERC Daresbury Laboratory, (1992)).

    Google Scholar 

  55. Rice, L. M. & Brunger, A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins Struct. Funct. Genet. 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  56. Adams, P. D., Pannu, N. S., Read, R. J. & Brunger, A. T. Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc. Natl Acad. Sci. USA 94, 5018–5023 (1997).

    Article  ADS  CAS  Google Scholar 

  57. Carson, M. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  58. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Geiger, G. Van Duyne, R. Gaudet and G. Meinke for assistance during data collection; L. Berman (X25-NSLS at Brookhaven), S. Ealick (CHESS at Cornell) and H. Bartunik (DESY at Hamburg) for access to and help with their respective synchrotron X-ray sources; P. Adams and A. Brunger for suggestions on structure refinement; J. Hunt and J. Deisenhofer for refined GroES coordinates; and members of the Sigler and Horwich labs (especially D. Boisvert) for advice and discussions. This work was supported in part by NIH grants to P.B.S. and A.L.H., and the Yale Center for Structural Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Sigler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Horwich, A. & Sigler, P. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388, 741–750 (1997). https://doi.org/10.1038/41944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41944

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing