Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications

Abstract

The ability of nonlinear optical materials to transmit, process and store information forms the basis of emerging optoelectronic and photonic technologies. Organic chromophore-containing polymers, in which the refractive index can be controlled by light or an electric field, are expected to play an important role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the decrease in bond-length alternation (BLA; see text) as the two resonance forms contribute more equally to ground-state structure (ad).
Figure 2
Figure 3
Figure 4: a, High-temperature NLO side-chain aromatic polyimides synthesized by using a post-Mitsunobu reaction to graft NLO chromophores onto hydroxyl-containing precursor polyimides.
Figure 5: Illustration of the photorefractive effect.
Figure 6
Figure 7: Comparison of low-Tg photorefractive (PR) polymers, illustrating the various components that impart photoconductivity, plasticization, sensitization and orientational nonlinearity.

Similar content being viewed by others

References

  1. Chemla, D. S. & Zyss, J. (eds) Nonlinear Optical Properties of Organic Molecules and Crystals(Academic, Orlando, (1987)).

    Google Scholar 

  2. Marder, S. R., Sohn, J. E. & Stucky, G. D. (eds) Materials for Nonlinear Optics: Chemical Perspectives(Vol. 455, ACS Symp. Ser., Am. Chem. Soc., Washington DC, (1991)).

    Book  Google Scholar 

  3. Peyghambarian, N., Koch, S. W. & Mysyrowicz, A. Introduction to Semiconductor Optics(Prentice-Hall, Englewood Cliffs, (1993)).

    Google Scholar 

  4. Buckingham, A. D. Permanent and induced molecular moments and long-range intermolecular forces. Adv. Chem. Phys. 12, 107–142 (1967).

    Google Scholar 

  5. Oudar, J. L. & Chemla, D. S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 66, 2664–2668 (1977).

    Google Scholar 

  6. Marder, S. R., Beratan, D. N. & Cheng, L. T. Approaches for optimizing the 1st electronic hyperpolarizability of conjugated organic molecules. Science 252, 103–106 (1991).

    Google Scholar 

  7. Gorman, C. B. & Marder, S. R. An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules. Proc. Natl Acad. Sci. USA 90, 11297–11301 (1993).

    Google Scholar 

  8. Meyers, F., Marder, S. R., Pierce, B. M. & Brédas, J. L. Electric-field modulated nonlinear-optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (alpha, beta, and gamma) and bond-length alternation. J. Am. Chem. Soc. 116, 10703–10714 (1994).

    Google Scholar 

  9. Salem, L. The Molecular Orbital Theory of Conjugated Systems(Benjamin, New York, (1966)).

    Google Scholar 

  10. Kuhn, C. Step potential model for nonlinear optical-properties of polyenes, push-pull polyenes and cyanines and the motion of solitons in long-chain cyanines. Synth. Met. 41–43;, 3681–3688 (1991).

    Google Scholar 

  11. Chen, G. H. & Mukamel, S. Nonlinear susceptibilities of donor-acceptor conjugated systems-coupled-oscillator representation. J. Am. Chem. Soc. 117, 4945–4964 (1995).

    Google Scholar 

  12. Dehu, C.et al. Solvent effects on the second-order nonlinear-optical response of pi-conjugated molecules–a combined evaluation through self-consistent reaction field calculations and hyper-Rayleigh scattering measurements. J. Am. Chem. Soc. 117, 10127–10128 (1995).

    Google Scholar 

  13. Lu, D. Q., Chen, G. H., Perry, J. W. & Goddard, W. A. Valence-bond charge-transfer model for nonlinear-optical properties of charge-transfer organic-molecules. J. Am. Chem. Soc. 116, 10679–10685 (1994).

    Google Scholar 

  14. Bourhill, G.et al. Experimental demonstration of the dependence of the 1st hyperpolarizability of donor-acceptor-substituted polyenes on the ground-state polarization and bond-length alternation. J. Am. Chem. Soc. 116, 2619–2620 (1994).

    Google Scholar 

  15. Marder, S. R.et al. Large 1st hyperpolarizabilities in push-pull polyenes by tuning of the bond-length alternation and aromaticity. Science 263, 511–514 (1994).

    Google Scholar 

  16. Dirk, C. W., Katz, H. E., Schilling, M. L. & King, L. A. Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities. Chem. Mater. 2, 700–705 (1990).

    Google Scholar 

  17. Jen, A. K. -Y., Rao, V. P., Wong, K. Y. & Drost, K. J. Functionalized thiophenes–second-order nonlinear optical-materials. J. Chem. Soc. Chem. Commun. 90–92 (1993).

    Google Scholar 

  18. Rao, V. P., Jen, A. K. Y., Wong, K. Y. & Drost, K. J. Dramatically enhanced second order nonlinear-optical susceptibilities in tricyanovinylthiophene derivatives. J. Chem. Soc. Chem. Commun. 1118–1120 (1993).

    Google Scholar 

  19. Moylan, C. R.et al. Nonlinear-optical chomophores with large hyperpolarizabilities and enhanced thermal stabilities. J. Am. Chem. Soc. 115, 12599–12600 (1993).

    Google Scholar 

  20. Jen, A. K. -Y., Cai, Y. M., Bedworth, P. V. & Marder, S. R. Synthesis and characterization of highly efficient and thermally stable diphenylamino-substituted thiophene stilbene chromophores for nonlinear-optical applications. Adv. Mater. 9, 132–135 (1997).

    Google Scholar 

  21. Cross, G. H., Bloor, D. & Szablewski, M. “Blue Window” organics for frequency doubling devices. Nonlin. Optics 14, 219–223 (1995).

    Google Scholar 

  22. Burland, D. M., Miller, R. D. & Walsh, C. A. Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94, 31–75 (1994).

    Google Scholar 

  23. Dalton, L. R.et al. Polymeric electro-optic modulators: materials synthesis and processing. Adv. Mater. 7, 519–540 (1995).

    Google Scholar 

  24. Singer, K. D., Sohn, J. E. & Lalama, S. J. Second harmonic generation in poled polymer films. Appl. Phys. Lett. 49, 248–250 (1986).

    Google Scholar 

  25. Ahlheim, M.et al. Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient. Science 271, 335–337 (1996).

    Google Scholar 

  26. Wu, J. W.et al. Thermal stability of electro-optic response in poled polyimide systems. Appl. Phys. Lett. 58, 225–227 (1991).

    Google Scholar 

  27. Jen, A. K. -Y., Wong, K. Y., Rao, V. P., Drost, K. & Cai, Y. M. Thermally stable poled polymers: highly efficient heteroaromatic chromophores in high temperature polyimides. J. Electron. Mater. 23, 653–657 (1994).

    Google Scholar 

  28. Wong, K. Y. & Jen, A. K. Y. Thermally stable poled polyimides using heteroaromatic chromophores. J. Appl. Phys. 75, 3308–3310 (1994).

    Google Scholar 

  29. Cai, Y. M. & Jen, A. K. Y. Thermally stable polyquinoline thin film with very large electro-optic response. Appl. Phys. Lett. 67, 299–301 (1995).

    Google Scholar 

  30. Chen, T. A., Jen, A. K. -Y. & Cai, Y. M. Facile approach to nonlinear optical side-chain aromatic polyimides with large second-order nonlinearity and thermal stability. J. Am. Chem. Soc. 117, 7295–7296 (1995).

    Google Scholar 

  31. Verbiest, T.et al. Exceptionally thermally stable polyimides for second-order nonlinear optical applications. Science 268, 1604–1606 (1995).

    Google Scholar 

  32. Miller, R. D.et al. Donor-embedded nonlinear optical side chain polyimides containing no-flexible tether: materials of exceptional thermal stability of relectrooptic applications. Macromolecules 28, 4970–4974 (1995).

    Google Scholar 

  33. Hubbard, M. A., Marks, T. J., Yang, J. & Wong, G. K. Poled polymeric nonlinear optical materials. Enhanced second harmonic generation stability of cross-linkable matrix/chromophore ensembles. Chem. Mater. 1, 167–169 (1989).

    Google Scholar 

  34. Eich, M., Bjorklund, G. C. & Yoon, D. Y. Poled amorphous polymers for second-order nonlinear optics. Polym. Adv. Technol. 1, 189–198 (1990).

    Google Scholar 

  35. Chen, M., Yu, L., Dalton, L. R., Shi, Y. & Steier, W. H. New polymers with large and stable second-order nonlinear optical effects. Macromolecules 24, 5421–5428 (1991).

    Google Scholar 

  36. Boogers, J. A. F., Klasse, P. Th. A., de Wlieger, J. J. & Tinnemans, A. H. A. Cross-linked polymer materials for nonlinear optics 2: polyurethanes bearing azobenzene dyes. Macromolecules 27, 205–209 (1994).

    Google Scholar 

  37. Lin, J. T., Hubbard, M. A., Marks, T. J., Lin, W. & Wong, G. K. Poled polymeric nonlinear optical materials. Exceptional second harmonic generation temporal stability of a chromophore-functionalized polyimide. Chem. Mater. 4, 1148–1150 (1992).

    Google Scholar 

  38. Topolsky, G., Lecomte, J. P. & Meyrueix, R. Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics. Macromolecules 26, 7383–7385 (1993).

    Google Scholar 

  39. Yu, L.et al. Thermally curable second-order nonlinear-optical polymers. Appl. Phys. Lett. 60, 1655–1657 (1992).

    Google Scholar 

  40. Ducharme, S., Scott, J. C., Twieg, R. J. & Moerner, W. E. Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846–1849 (1991).

    Google Scholar 

  41. Meerholz, K., Volodin, B. L., Sandalphon, Kippele, B. & < Peyghambarian, N. A. Photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497–500 (1994).

    Article  ADS  CAS  Google Scholar 

  42. Volodin, B. L., Kippelen, B., Meerholz, K., Javidi, B. & Peyghambarian, N. Apolymeric optical pattern-recognition system for security verification. Nature 383, 58–60 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Moerner, W. E., Silence, S. M., Hache, F. & Bjorklund, G. C. Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11, 320–330 (1994).

    Google Scholar 

  44. Kippelen, B., Meyers, F., Peyghambarian, N. & Marder, S. R. Chromophore design for photorefractive applications. J. Am. Chem. Soc. 119, 4559–4560 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank the many authors cited in this Review, as well as those whose contributions could not be discussed owing to length constraints, for their contributions to the field andtoourunderstainding of it; and J. Perry and F. Meyers for help in the preparation of this manuscript.This work was supported by the US Office of Naval Research, the US Air Force OfficeofScientific Research, the National Science Foundation, and the US Ballistic Missiles Defense Organization.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marder, S., Kippelen, B., Jen, AY. et al. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845–851 (1997). https://doi.org/10.1038/42190

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/42190

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing