Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors

Abstract

The mechanisms controlling the commitment of haematopoietic progenitors to the B-lymphoid lineage are poorly understood. The observations that mice deficient in E2A1,2 and EBF3 lack B-lineage cells have implicated these two transcription factors in the commitment process. Moreover, the expression of genes encoding components of the rearrangement machinery (RAG1, RAG2, TdT) or pre-B-cell receptor (λ5, VpreB, Igα, Igβ) has been considered to indicate B-lineage commitment4. All these genes including E2A and EBF are expressed in pro-B cells lacking the transcription factor Pax5 (refs 5,6,7). Here we show that cloned Pax5-deficient pro-B cells transferred into RAG2-deficient mice provide long-term reconstitution of the thymus and give rise to mature T cells expressing α/β-T-cell receptors. The bone marrow of these mice contains a population of cells of Pax5-/- origin with the same phenotype as the donor pro-B cells. When transferred into secondary recipients, these pro-B cells again home to the bone marrow and reconstitute the thymus. Hence, B-lineage commitment is determined neither by immunoglobulin DJ rearrangement nor by the expression of E2A, EBF, λ5, VpreB, Igα and Igβ. Instead, our data implicate Pax5 in the control of B-lineage commitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstitution of T-cell development by Pax5-/- pro-B cells.
Figure 2: Gene expression and rearrangement in thymocytes derived from Pax5-/- pro-B cells.
Figure 3: Time course of thymus reconstitution.
Figure 4: Homing and self-renewal of Pax5-/- pro-B cells in the bone marrow.

Similar content being viewed by others

References

  1. Bain,G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  2. Zhuang,Y., Soriano,P. & Weintraub,H. The helix-loop-helix gene E2A is required for B cells formation. Cell 79, 875–884 (1994).

    Article  CAS  Google Scholar 

  3. Lin,H. & Grosschedl,R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Melchers,F. & Rolink,A. in Fundamental Immunology (ed. Paul, W. E.) 183–224 (Lippincott-Raven, Philadelphia, 1999).

    Google Scholar 

  5. Urbánek,P., Wang, Z.-Q., Fetka,I., Wagner,E. F. & Busslinger,M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    Article  Google Scholar 

  6. Nutt,S. L., Urbánek,P., Rolink,A. & Busslinger,M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 (1997).

    Article  CAS  Google Scholar 

  7. Nutt,S. L., Morrison,A. M., Dörfler,P., Rolink,A. & Busslinger,M. Identification of BSAP (Pax5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998).

    Article  CAS  Google Scholar 

  8. Rolink,A., Kudo,A., Karasuyama,H., Kikuchi,Y. & Melchers,F. Long-term proliferating early pre B cell lines and clones with the potential to develop to surface-Ig positive, mitogen-reactive B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).

    Article  CAS  Google Scholar 

  9. Rolink,A., Grawunder,U., Winkler,T. H., Karasuyama,H. & Melchers,F. IL-2 receptor α chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6, 1257–1264 (1994).

    Article  CAS  Google Scholar 

  10. Reininger,L., Radaszkiewicz,T., Kosco,M., Melchers,F. & Rolink,A. G. Development of autoimmune disease in SCID mice populated with long-term in vitro proliferating (NZB × NZW)F1 pre-B cells. J. Exp. Med. 176, 1343–1353 (1992).

    Article  CAS  Google Scholar 

  11. Reininger,L. et al. Intrinsic B cell defects in NZB and NZW mice contribute to systemic lupus erythematosus in (NZB × NZW)F1 mice. J. Exp. Med. 184, 853–861 (1996).

    Article  CAS  Google Scholar 

  12. Nutt,S. L., Heavey,B., Rolink,A. G. & Busslinger,M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Fehling,H. J., Krotkova,A., Saint-Ruf,C. & von Boehmer,H. Crucial role of the pre-T-cell receptor-α gene in development of α/β but not γ/δ T cells. Nature 375, 795–798 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Ceredig,R. & Schreyer,M. Immunohistochemical localization of host and donor-derived cells in the regenerating thymus of radiation bone marrow chimeras. Thymus 6, 15–26 (1984).

    CAS  PubMed  Google Scholar 

  15. Born,W., White,J., Kappler,J. & Marrack,P. Rearrangement of IgH genes in normal thymocyte development. J. Immunol. 140, 3228–3232 (1988).

    CAS  PubMed  Google Scholar 

  16. Wang,H., Diamond,R. A. & Rothenberg,E. V. Cross-lineage expression of Ig-β (B29) in thymocytes: positive and negative gene regulation to establish T cell identity. Proc. Natl Acad. Sci. USA 95, 6831–6836 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Kondo,M., Weissman,I. L. & Akashi,K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  18. Rodewald, H.-R., Kretzschmar,K., Takeda,S., Hohl,C. & Dessing,M. Identification of pro-thymocytes in murine fetal blood: T lineage commitment can precede thymus colonisation. EMBO J. 13, 4229–4240 (1994).

    Article  Google Scholar 

  19. Grigoriadis,A. et al. Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Shinkai,Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  21. Markowitz,D., Goff,S. & Bank,A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Backstrom,B. T. et al. A motif within the T cell receptor α chain constant region connecting peptide domain controls antigen responsiveness. Immunity 5, 437–447 (1996).

    Article  CAS  Google Scholar 

  23. Rolink,A., Grawunder,U., Haasner,D., Strasser,A. & Melchers,F. Immature surface Ig+ B cells can continue to rearrange κ and λ L chain gene loci. J. Exp. Med. 178, 1263–1270 (1993).

    Article  CAS  Google Scholar 

  24. Gu,H., Kitamura,D. & Rajewsky,K. B cell development regulated by gene rearrangement: arrest of maturation by membrane-bound Dµ protein and selection of DH element reading frames. Cell 65, 47–54 (1991).

    Article  CAS  Google Scholar 

  25. Grawunder,U., Haasner,D., Melchers,F. & Rolink,A. Rearrangement and expression of κ light chain genes can occur without µ heavy chain expression during differentiation of pre-B cells. Int. Immunol. 5, 1609–1618 (1993).

    Article  CAS  Google Scholar 

  26. Bruno,L., Rocha,B., Rolink,A., von Boehmer,H. & Rodewald,H. R. Intra- and extra-thymic expression of the pre-T cell receptor α gene. Eur. J. Immunol. 25, 1877–1882 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Andersson, K. Karjalainen and E. Palmer for critical reading of the manuscript; A. Groenewegen, N. Straube, M. Dessing and A. Pickert for technical assistance; E. Wagner for animal husbandry; and T. Winkler for the GFP retrovirus. This work was supported by the Basel Institute for Immunology, the I.M.P. Vienna and a grant from the Austrian Industrial Research Promotion Fund. The Basel Institute for Immunology was founded and is supported by F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius G. Rolink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolink, A., Nutt, S., Melchers, F. et al. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999). https://doi.org/10.1038/44164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44164

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing