Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo

Abstract

Monoclonal antibodies specific for the p185HER2/neu growth factor receptor represent a significant advance in receptor-based therapy for p185HER2/neu-expressing human cancers. We have used a structure-based approach to develop a small (1.5 kDa) exocyclic anti-HER2/neu peptide mimic (AHNP) functionally similar to an anti-p185HER2/neu monoclonal antibody, 4D5 (Herceptin). The AHNP mimetic specifically binds to p185HER2/neu with high affinity (KD=300 nM). This results in inhibition of proliferation of p185HER2/neu-overexpressing tumor cells, and inhibition of colony formation in vitro and growth of p185HER2/neu-expressing tumors in athymic mice. In addition, the mimetic sensitizes the tumor cells to apoptosis when used in conjunction with ionizing radiation or chemotherapeutic agents. A comparison of the molar quantities of the Herceptin antibody and the AHNP mimetic required for inhibiting cell growth and anchorage-independent growth showed generally similar activities. The structure-based derivation of the AHNP represents a novel strategy for the design of receptor-specific tumor therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and kinetic binding analyses of AHNP.
Figure 2: Inhibition of cell proliferation and anchorage-independent growth by AHNP.
Figure 3: Combined cytotoxicity of doxorubicin and AHNP.
Figure 4: AHNP enhances γ-irradiation-induced apoptosis.
Figure 5: Inhibition of in vivo tumor growth by administration of AHNP.

Similar content being viewed by others

References

  1. Slamon, D.J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  Google Scholar 

  2. Cohen, J.A. et al. Expression pattern of the neu (NGL) gene-encoded growth factor receptor protein (p185neu) in normal and transformed epithelial tissues of the digestive tract. Oncogene 4, 81–88 (1989).

    CAS  PubMed  Google Scholar 

  3. Drebin, J.A., Link, V.C., Stern, D.F., Weinberg, R.A. & Greene, M.I. Development of monoclonal antibodies reactive with the product of the neu oncogene. Symp. Fund. Cancer Res. 38, 277–289 (1986).

    CAS  Google Scholar 

  4. Drebin, J.A., Link, V.C. & Greene, M.I. Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene 2, 387–394 (1988).

    CAS  PubMed  Google Scholar 

  5. Baselga, J., Norton, L., Albanell, J., Kim, Y.M. & Mendelsohn, J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 58, 2825–2831 (1998).

    CAS  PubMed  Google Scholar 

  6. Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89, 4285–4289 (1992).

    Article  CAS  Google Scholar 

  7. Fendly, B.M. et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50, 1550–1558 (1990).

    CAS  PubMed  Google Scholar 

  8. Hudziak, R.M. et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol. Cell Biol. 9, 1165–1172 (1989).

    Article  CAS  Google Scholar 

  9. Drebin, J.A., Stern, D.F., Link, V.C., Weinberg, R.A. & Greene, M.I. Monoclonal antibodies identify a cell-surface antigen associated with an activated cellular oncogene. Nature 312, 545–548 (1984).

    Article  CAS  Google Scholar 

  10. Drebin, J.A., Link, V.C., Weinberg, R.A. & Greene, M.I. Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc. Natl. Acad. Sci. USA 83, 9129–9133 (1986).

    Article  CAS  Google Scholar 

  11. Cho, M.J. & Juliano, R. Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations. Trends Biotechnol. 14, 153–158 (1996).

    Article  CAS  Google Scholar 

  12. Hruby, V.J. Conformational and topographical considerations in the design of biologically active peptides. Biopolymers 33, 1073–1082 (1993).

    Article  CAS  Google Scholar 

  13. Langston, S. Peptidomimetics and small molecule design. Drug Discov. Today 2, 254–256 (1997).

    Article  CAS  Google Scholar 

  14. Qabar, M., Urban, J., Sia, C., Klein, M. & Kahn, M. Pharmaceutical applications of peptidomimetics. Lett. Pept. Sci. 3, 25–30 (1996).

    Article  CAS  Google Scholar 

  15. Murali, R. & Greene, M.I. Structure-based design of immunologically active therapeutic peptides. Immunol. Res. 17, 163–169 (1998).

    Article  CAS  Google Scholar 

  16. Moore, G.J. Designing peptide mimetics. Trends Pharmacol. Sci. 15, 124–129 (1994).

    Article  CAS  Google Scholar 

  17. KieberEmmons, T., Murali, R. & Greene, M.I. Therapeutic peptides and peptidomimetics. Curr. Opin. Biotechnol. 8, 435–441 (1997).

    Article  CAS  Google Scholar 

  18. Saragovi, H.U. et al. Design and synthesis of a mimetic from an antibody complementarity-determining region. Science 253, 792–795 (1991).

    Article  CAS  Google Scholar 

  19. Zhang, X. et al. Synthetic Cd4 exocyclic peptides antagonize Cd4 holoreceptor binding and T-cell activation. Nat. Biotechnol. 14, 472–475. (1996).

    Article  CAS  Google Scholar 

  20. Takasaki, W., Kajino, Y., Kajino, K., Murali, R. & Greene, M.I. Structure-based design and characterization of exocyclic peptidomimetics that inhibit TNF alpha binding to its receptor. Nat. Biotechnol. 15, 1266–1270 (1997).

    Article  CAS  Google Scholar 

  21. Chothia, C. & Lesk, A.M. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917 (1987).

    Article  CAS  Google Scholar 

  22. MacCallum, R.M., Martin, A.C. & Thornton, J.M. Antibody-antigen interactions: contact analysis and binding site topography. J. Mol. Biol. 262, 732–745 (1996).

    Article  CAS  Google Scholar 

  23. Mariuzza, R.A., Phillips, S.E. & Poljak, R.J. The structural basis of antigen-antibody recognition. Annu. Rev. Biophys. Biophys. Chem. 16, 139–159 (1987).

    Article  CAS  Google Scholar 

  24. Bruck, C. et al. Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc. Natl. Acad. Sci. USA 83, 6578–6582 (1986).

    Article  CAS  Google Scholar 

  25. Eigenbrot, C., Randal, M., Presta, L., Carter, P. & Kossiakoff, A.A. X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. J. Mol. Biol. 229, 969–995 (1993).

    Article  CAS  Google Scholar 

  26. Eigenbrot, C. et al. X-ray structures of fragments from binding and nonbinding versions of a humanized anti-CD18 antibody: structural indications of the key role of VH residues 59 to 65. Proteins 18, 49–62 (1994).

    Article  CAS  Google Scholar 

  27. Zhang, H. et al. Pathobiological features of shared antigenic epitopes and biological functions of distinct and humanized anti-p185her2/neu monoclonal antibodies. Exp. Mol. Pathol. 67, 15–25 (1999).

    Article  CAS  Google Scholar 

  28. Zhang, X. et al. Synthetic Cd4 exocyclics inhibit binding of human-immunodeficiency-virus type-1 envelope to Cd4 and virus-replication in T-lymphocytes. Nat. Biotechnol. 15, 150–154. (1997).

    Article  Google Scholar 

  29. Adang, A.E.P., Hermkens, P.H.H., Linders, J.T.M., Ottenheijm, H.C.J. & van Staveren, C.J. Case histories of peptidomimetics: progression from peptides to drugs. Recl. Trav. Chim. Pays-Bas. 113, 63–78 (1994).

    Article  CAS  Google Scholar 

  30. Akamatsu, M. et al. Potent inhibition of protein-tyrosine phosphatase by phosphotyrosine-mimic containing cyclic peptides. Bioorg. Med. Chem. 5, 157–163 (1997).

    Article  CAS  Google Scholar 

  31. Graciani, N.R., Tsang, K.Y., McCutchen, S.L. & Kelly, J.W. Amino acids that specify structure through hydrophobic clustering and histidine-aromatic interactions lead to biologically active peptidomimetics. Bioorg. Med. Chem. 2, 999–1006 (1994).

    Article  CAS  Google Scholar 

  32. McDonnell, J.M., Fushman, D., Cahill, S.M., Sutton, B.J. & Cowburn, D. Solution structures of Fc epsilon RI alpha-chain mimics: a beta-hairpin peptide and its retroenantiomer. J. Am. Chem. Soc. 119, 5321–5328 (1997).

    Article  CAS  Google Scholar 

  33. Yiallouros, I. et al. Phosphinic peptides, the first potent inhibitors of astacin, behave as extremely slow-binding inhibitors. Biochem. J. 331, 375–379 (1998).

    Article  CAS  Google Scholar 

  34. Benveniste, M. & Mayer, M.L. Structure-activity analysis of binding kinetics for NMDA receptor competitive antagonists: the influence of conformational restriction. Br. J. Pharmacol. 104, 207–221 (1991).

    Article  CAS  Google Scholar 

  35. Moosmayer, D. et al. Characterization of different soluble TNF receptor (TNFR80) derivatives: positive influence of the intracellular domain on receptor/ligand interaction and TNF neutralization capacity. J. Interf. Cytok. Res. 16, 471–477 (1996).

    Article  CAS  Google Scholar 

  36. Drebin, J.A., Link, V.C., Stern, D.F., Weinberg, R.A. & Greene, M.I. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41, 697–706 (1985).

    Article  CAS  Google Scholar 

  37. Qian, X. et al. Identification of p185neu sequences required for monoclonal antibody- or ligand-mediated receptor signal attenuation. DNA Cell Biol. 16, 1395–1405 (1997).

    Article  CAS  Google Scholar 

  38. Hansen, M.B., Nielsen, S.E. & Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 (1989).

    Article  CAS  Google Scholar 

  39. Shepard, H.M. et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. [Review]. J. Clin. Immunol. 11, 117–127 (1991).

    Article  CAS  Google Scholar 

  40. O'Rourke, D.M. et al. Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc. Natl. Acad. Sci. USA 95, 10842–10847 (1998).

    Article  CAS  Google Scholar 

  41. Waldman, T. et al. Cell-cycle arrest versus cell death in cancer therapy. Nat. Med. 3, 1034–1036 (1997).

    Article  CAS  Google Scholar 

  42. Katsumata, M. et al. Prevention of breast tumour development in vivo by downregulation of the p185neu receptor. Nat. Med. 1, 644–648 (1995).

    Article  CAS  Google Scholar 

  43. Qian, X., Dougall, W.C., Hellman, M.E. & Greene, M.I. Kinase-deficient neu proteins suppress epidermal growth factor receptor function and abolish cell transformation. Oncogene 9, 1507–1514 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants awarded to M.I.G. from the Abramson Cancer Institute, National Cancer Institute, NIH, and the US Army.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark I. Greene or Ramachandran Murali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, BW., Zhang, HT., Wu, C. et al. Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo. Nat Biotechnol 18, 194–198 (2000). https://doi.org/10.1038/72651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing