Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Cell replacement therapies for central nervous system disorders

Abstract

In animal models, immature neural precursors can replace lost neurons, restore function and promote brain self-repair. Clinical trials in Parkinson's disease suggest that similar approaches may also work in the diseased human brain. But how realistic is it that cell replacement can be developed into effective clinical therapy?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Sotelo, C. & Alvarado-Mallart, R. M. The reconstruction of cerebellar circuits. Trends Neurosci. 14, 350–355 (1991).

    Article  CAS  Google Scholar 

  2. Hernit-Grant, C. S. & Macklis, J. D. Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections. Exp. Neurol. 139, 131–142 (1996).

    Article  CAS  Google Scholar 

  3. Snyder, Y. E., Yoon, C., Flax, J. D. & Macklis, J. D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci.USA 94, 11663–11668 (1997).

    Article  CAS  Google Scholar 

  4. Dunnett, S. B. & Björklund, A. in Functional Neural Transplantation (eds. Dunnett, S. B. & Björklund, A.) 531–567 (Raven, New York, 1994).

    Google Scholar 

  5. Raisman, G. Use of Schwann cells to induce repair of adult CNS tracts. Rev. Neurol. (Paris) 153, 521–525 (1997).

    CAS  Google Scholar 

  6. Duncan, I. D., Grever, W. E. & Zhang, S.-C. Repair of myelin disease: strategies and progress in animal models. Mol. Med. Today 3, 554–561 (1997).

    Article  CAS  Google Scholar 

  7. Herman, J. P. & Abrous, N. D. Dopaminergic neural grafts after fifteen years: Results and perspectives. Prog. Neurobiol. 44, 1–35 (1994).

    Article  CAS  Google Scholar 

  8. Brundin, P., Duan, W.-M. & Sauer, H. in Functional Neural Transplantation (eds. Dunnett, S. B. & Björklund, A.) 9–46 (Raven, New York, 1994).

    Google Scholar 

  9. Annett, L. E. in Functional Neural Transplantation (eds. Dunnett, S. B. and Björklund, A.) 71–102 (Raven, New York, 1994).

    Google Scholar 

  10. Björklund, A. Dopaminergic transplants in experimental parkinsonism: Cellular mechanisms of graft-induced functional recovery. Curr. Opin. Neurobiol. 2, 683–689 (1992).

    Article  Google Scholar 

  11. Forni, C. et al. Time-course of recovery of dopamine neuron activity during reinnervation of the denervated striatum by fetal mesencephalic grafts as assessed by in vivo voltammetry. Exp. Brain Res. 76, 75–87 (1989).

    Article  CAS  Google Scholar 

  12. Dunnett, S. B., Whishaw, I. Q., Rogers, D. C. & Jones, G. H. Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Res. 415, 63–78 (1987).

    Article  CAS  Google Scholar 

  13. Winkler, C., Bentlage, C., Nikkhah, G., Samii, M. & Björklund, A. Intranigral transplants of GABA-rich striatal tissue induce behavioral recovery in the rat Parkinson model and promote the effects obtained by intrastriatal dopaminergic transplants. Exp. Neurol. 155, 165–186 (1999).

    Article  CAS  Google Scholar 

  14. Fisher, L. J., Young, S. J., Tepper, J. M., Groves, P. M. & Gage, F. H. Electrophysiological characteristics of cells within mesencephalon suspension grafts. Neuroscience 40, 109–122 (1991).

    Article  CAS  Google Scholar 

  15. Doucet, G. et al. Host afferents into intrastriatal transplants of fetal ventral mesencephalon. Exp. Neurol. 106, 1–19 (1989).

    Article  CAS  Google Scholar 

  16. Olanow, C. W., Kordower, J. H. & Freeman, T. B. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci. 19, 102–109 (1996).

    Article  CAS  Google Scholar 

  17. Lindvall, O. Cerebral implantation in movement disorders: State of the art. Mov. Disord. 14, 201–205 (1999).

    Article  CAS  Google Scholar 

  18. Freeman, T. B. et al. Use of placebo surgery in controlled trials of cellular-based therapy for Parkinson's disease. N. Engl. J. Med. 341, 988–992 (1999).

    Article  Google Scholar 

  19. Kordower, J. H. et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med. 332, 1118–1124 (1995).

    Article  CAS  Google Scholar 

  20. Kordower, J. H. et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease. Mov. Disord. 13, 383–393 (1998).

    Article  CAS  Google Scholar 

  21. Björklund, A., Campbell, K., Sirinathsinghji, D. J., Fricker, R. A. & Dunnett, S. B. in Functional Neural Transplantation (eds. Dunnett, S. B. & Björklund, A.) 157–195 (Raven, New York, 1994).

    Google Scholar 

  22. Dunnett, S. B. Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behav. Brain. Res. 66, 133–142 (1995).

    Article  CAS  Google Scholar 

  23. Kendall, A. L. et al. Functional integration of striatal allografts in a primate model of Huntington's disease. Nat. Med. 4, 727–729 (1998).

    Article  CAS  Google Scholar 

  24. Palfi, S. P. et al. Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat. Med. 4, 963–966 (1998).

    Article  CAS  Google Scholar 

  25. Brasted, P. J., Watts, C., Robbins, T. W. & Dunnett, S. B. Associative plasticity in striatal transplants. Proc. Natl. Acad. Sci. USA 96, 10524–10529 (1999).

    Article  CAS  Google Scholar 

  26. Knowlton, B. J. & Mangles, J. A & Squire, L. R. A neostriatal habit learning system in humans. Science 273, 1399–1402 (1996).

    Article  CAS  Google Scholar 

  27. Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V. & Graybiel, A. M. Building neural representations of habits. Science 286, 1745–1749 (1999).

    Article  CAS  Google Scholar 

  28. Philpott, L. M. et al. Neuropsychological functioning following fetal striatal transplantation in Huntington's chorea: Three case presentations. Cell Transplantation 6, 203–212 (1997).

    Article  CAS  Google Scholar 

  29. Bachoud-Lévi, A.-C. et al. Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington's disease. Exp. Neurol. 161, 194–202 (2000).

    Article  Google Scholar 

  30. McNamara, J. O. Emerging insights into the genesis of epilepsy. Nature 399 (suppl.), A15–22 (1999).

    Article  CAS  Google Scholar 

  31. Lindvall, O., Bengzon, J., Elmér, E., Kokaia, M. & Kokaia, Z. in Functional Neural Transplantation (eds. Dunnett, S. B. & Björklund, A.) 387–413 (Raven, New York, 1994).

    Google Scholar 

  32. Kokaia, M et al. Seizure suppression in kindling epilepsy by intracerebral implants of GABA – but not by noradrenalin-releasing polymer matrices. Exp. Brain Res. 100, 385–394 (1994).

    Article  CAS  Google Scholar 

  33. Löscher, W., Ebert, U., Lehmann, H., Rosenthal, C. & Nikkhah, G. Seizure suppression in kindling epilepsy by grafts of fetal GABAergic neurons in rat substantia nigra. J. Neurosci. Res. 15, 196–209 (1998).

    Article  Google Scholar 

  34. Hodges, H., Sinden, J., Meldrum, B. & Gray, J. in Functional Neural Transplantation (eds. Dunnett, S. B. & Björklund, A.) 347–386 (Raven, New York, 1994).

    Google Scholar 

  35. Hodges, H. et al. Contrasting effects of fetal CA1 and CA3 hippocampal grafts on deficits in spatial learning and working memory induced by global cerebral ischaemia in rats. Neuroscience 72, 959–988 (1996).

    Article  CAS  Google Scholar 

  36. Sørensen, J. C., Grabowski, M., Zimmer, J. & Johansson, B. B. Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp. Neurol. 138, 227–235 (1996).

    Article  Google Scholar 

  37. Mattsson, B., Sørensen, J. C., Zimmer, J. & Johansson, B. B. Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 28, 1225–1232 (1997).

    Article  CAS  Google Scholar 

  38. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M.-Y. & Sanberg, P. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp. Neurol. 149, 310–321 (1998).

    Article  CAS  Google Scholar 

  39. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M.-Y. & Sanberg, P. Cerebral ischemia and CNS transplantation: differential effects of grafted fetal rat striatal cells and human neurons derived from a clonal cell line. Neuroreport 9, 3703–3709 (1998).

    Article  CAS  Google Scholar 

  40. Sinden, J. D. et al. Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia-lesioned hippocampus. Neuroscience 81, 599–608 (1997).

    Article  CAS  Google Scholar 

  41. Studer, L., Tabar, V. & McKay, R. D. G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    Article  CAS  Google Scholar 

  42. Ling, Z. D., Potter, E. D., Lipton, J. W. & Carvey, P. M. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol. 149, 411–423 (1998).

    Article  CAS  Google Scholar 

  43. Potter, E. D., Ling, Z. D. & Carvey, P. M. Cytokine-induced conversion of mesencephalic-derived progenitor cells into dopamine neurons. Cell Tissue Res. 296, 235–246 (1999).

    Article  CAS  Google Scholar 

  44. Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotech. 17, 653–659 (1999).

    Article  CAS  Google Scholar 

  45. Zuddas, A., Corsini, G. U., Barker, J. L., Kopin, I. J. & di Porzio, U. Specific reinnervation of lesioned mouse striatum by grafted mesencephalic dopaminergic neurons. Eur. J. Neurosci. 3, 72–85 (1991).

    Article  Google Scholar 

  46. Hudson, J. L., Bickford, P., Johansson, M., Hoffer, B. J. & Strömberg, I. Target and neurotransmitter specificity of fetal central nervous system transplants: Importance for functional reinnervation. J. Neurosci. 14, 283–290 (1994).

    Article  CAS  Google Scholar 

  47. Edlund, T. & Jessell, T. Progression from extrinsic to intrinsic signaling in cell fate specification: A view from the nervous system. Cell 96, 211–224 (1999).

    Article  CAS  Google Scholar 

  48. Garcia-Verdugo, J. M., Doetch, F., Wichterle, H., Lim, D. A. & Alvarez-Buylla, A. Architecture and cell types of the adult subventricular zone: In search of the stem cells. J. Neurobiol. 36, 234–248 (1998).

    Article  CAS  Google Scholar 

  49. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  50. Suhonen, J. O., Petersen, D. A., Ray, J. & Gage, F. H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627 (1996).

    Article  CAS  Google Scholar 

  51. Flax, J. D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotech. 16, 1033–1039 (1998).

    Article  CAS  Google Scholar 

  52. Fricker, R. A. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005 (1999).

    Article  CAS  Google Scholar 

  53. Shihabuddin, L. S., Holets, V. R. & Whittemore, S. R. Selective hippocampal lesions differentially affect the phenotypic fate of transplanted neuronal precursor cells. Exp. Neurol. 139, 61–72 (1996).

    Article  CAS  Google Scholar 

  54. Lundberg, C., Winkler, C., Whittemore, S. R. & Björklund, A. Conditionally immortalized neural progenitor cells grafted to the striatum exhibit site-specific neuronal differentiation and establish connections with the host globus pallidus. Neurobiol. Disease 3, 33–50 (1996).

    Article  CAS  Google Scholar 

  55. Piccini, P. et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci. 2, 1137–1140 (1999).

    Article  CAS  Google Scholar 

  56. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  57. Wictorin, K. Anatomy and connectivity of intrastriatal striatal tansplants. Prog. Neurobiol. 38, 611–639 (1992).

    Article  CAS  Google Scholar 

  58. Clough, R. et al. Fetal raphe transplants reduce seizure severity in serotonin-depleted GEPRs. Neuroreport 8, 341–346 (1996).

    Article  CAS  Google Scholar 

  59. Ferencz, I. et al. Suppression of kindling epileptogenesis in rats by intrahippocampal cholinergic grafts. Eur. J. Neurosci. 10, 213–220 (1998).

    Article  CAS  Google Scholar 

  60. Thompson, K. et al. Conditionally immortalized cell lines, engineered to produce and release GABA, modulate the development of behavioral seizures. Exp. Neurol. 161, 481–489 (2000).

    Article  CAS  Google Scholar 

  61. Grabowski, M., Sørensen, J. C., Mattsson, B, Zimmer, J. & Johansson, B. B. Influence of an enriched environment and cortical grafting on functional outcome in brain infarcts of adult rats. Exp. Neurol. 133, 96–102 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anders Björklund or Olle Lindvall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björklund, A., Lindvall, O. Cell replacement therapies for central nervous system disorders. Nat Neurosci 3, 537–544 (2000). https://doi.org/10.1038/75705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing