Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases

Abstract

DNA helicases are involved in many aspects of DNA metabolism, including transcription, replication, recombination and repair. In the yeast Saccharomyces cerevisiae, the absence of the Sgs1 helicase results in genomic instability and accelerated ageing1,2,3,4. In human cells, mutations in orthologues of SGS1 lead to Bloom (BS), Werner (WS) or Rothmund-Thomson (RTS) syndromes, which are rare, autosomal recessive diseases characterized by genetic instability associated with cancer predisposition5,6,7. Although data concerning these human diseases are accumulating, there is still no clear idea of the function of the proteins involved. Here we show that sgs1Δ mutants are deficient in DNA repair and are defective for induced recombination events that involve homologous chromosomes. The role of homologous recombination is further evidenced in haploid cells in which both Sgs1p and Srs2p are absent. Yeast SRS2 encodes another DNA helicase involved in the maintenance of genome integrity8,9,10. Our data suggest that some defects observed in BS, WS or RTS are the consequence of unrestrained recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of irradiation on survival and heteroallelic recombination of sgs1Δ mutants.
Figure 2: Tetrad dissections of W303 derivatives heterozygous for srs2::HIS3 , sgs1::URA3 and either rad51::LEU2 (D28), rad55::LEU2 (D29) or rad57::LEU2 (D30).
Figure 3: Comparison of spore colony growth on YPD medium.

Similar content being viewed by others

References

  1. Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391– 8398 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rothstein, R. & Gangloff, S. Hyper-recombination and Bloom's syndrome: microbes again provide clues about cancer. Genome Res. 5, 421–426 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  3. Watt, P.M., Hickson, I.D., Borts, R.H. & Louis, E.J. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinclair, D.A., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313– 1316 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, C.E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kitao, S. et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 22, 82– 84 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases . Cell 83, 655–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rong, L., Palladino, F., Aguilera, A. & Klein, H.L. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127, 75–85 ( 1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rong, L. & Klein, H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 (1993).

    CAS  PubMed  Google Scholar 

  11. Frei, C. & Gasser, S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81 –96 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray, J.M., Lindsay, H.D., Munday, C.A. & Carr, A.M. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17, 6868–6875 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart, E., Chapman, C.R., Al-Khodairy, F., Carr, A.M. & Enoch, T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16, 2682– 2692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. German, J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine 72, 393–406 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, J. et al. Human homologues of yeast helicase. Nature 383, 678–679 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Chanet, R., Heude, M., Adjiri, A., Maloisel, L. & Fabre, F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16, 4782–4789 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milne, G.T., Ho, T. & Weaver, D.T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139, 1189–1199 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schild, D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140, 115– 127 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224 –3234 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S.K., Johnson, R.E., Yu, S.L., Prakash, L. & Prakash, S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339–2342 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Gangloff, S., de Massy, B., Arthur, L., Rothstein, R. & Fabre, F. The essential role of yeast topoisomerase III in meiosis depends on recombination. EMBO J. 18, 1701 –1711 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaytor, M.D., Nguyen, M. & Livingston, D.M. The complexity of the interaction between RAD52 and SRS2. Genetics 140, 1441 –1442 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rothstein, R., Michel, B. & Gangloff, S. Replication fork pausing and recombination or “gimme a break”. Genes Dev. 14, 1– 10 (2000).

    CAS  PubMed  Google Scholar 

  24. Sherman, F. & Hicks, J. Micromanipulation and Dissection of Asci 21–37 (Academic, San Diego, 1991).

    Google Scholar 

  25. Thomas, B.J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619 –630 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, J. & Rothstein, R. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae . Genetics 151, 447– 458 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Coïc, X. Veaute and J. Smith for commenting on the manuscript; and R. Borts for constructing the lys2 heteroalleles in the W303 background. This work was supported by le Commissariat à l'Energie Atomique, le Centre National pour la Recherche Scientifique, le Ministère de l'Education Nationale, de la Recherche et de la Technologie and Electricité de France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serge Gangloff or Francis Fabre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25, 192–194 (2000). https://doi.org/10.1038/76055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing