Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Independent regulation of the two Pax5 alleles during B-cell development

Abstract

The developmental control genes of the Pax family are frequently associated with mouse mutants and human disease syndromes1,2,3. The function of these transcription factors is sensitive to gene dosage, as mutation of one allele1,2,3 or a modest increase in gene number4 results in phenotypic abnormalities. Pax5 has an important role in B-cell and midbrain development5,6,7. By following the expression of individual Pax5 alleles at the single-cell level, we demonstrate here that Pax5 is subject to allele-specific regulation during B-lymphopoiesis. Pax5 is predominantly transcribed from only one allele in early progenitors and mature B cells, whereas it switches to a biallelic transcription mode in immature B cells. The allele-specific regulation of Pax5 is stochastic, reversible, independent of parental origin and correlates with synchronous replication, in contrast with imprinted8,9 and other monoallelically expressed genes10,11. As a consequence, B-lymphoid tissues are mosaics with respect to the transcribed Pax5 allele, and thus mutation of one allele in heterozygous mice results in deletion of the cell population expressing the mutant allele due to loss of Pax5 function at the single-cell level. Similar allele-specific regulation may be a common mechanism causing the haploinsufficiency and frequent association of other Pax genes with human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Independent expression of Pax5 alleles in B lymphocytes in vivo.
Figure 2: Switching of expression between Pax5 alleles in pro-B cells in vitro.
Figure 3: Allele-specific transcription of Pax5.
Figure 4: Single-cell RT-PCR analysis of Pax5 and Cd19 expression in splenic B cells.
Figure 5: Allele-specific Pax5 transcription in genetically unmanipulated B cells.

Similar content being viewed by others

References

  1. Strachan, T. & Read, A.P. PAX genes. Curr. Opin. Genet. Dev. 4, 427–438 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  2. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colombomas, renal anomalies and vesicoureteral reflux. Nature Genet. 9, 358–364 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  3. Macchia, P.E. et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nature Genet. 19, 83–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Schedl, A. et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell 86, 71–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Urbánek, P., Wang, Z.-Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 ( 1994).

    Article  PubMed  Google Scholar 

  6. Nutt, S.L., Urbánek, P., Rolink, A. & Busslinger, M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Nutt, S.L., Morrison, A.M., Dörfler, P., Rolink, A. & Busslinger, M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barlow, D.P. Gametic imprinting in mammals. Science 270, 1610–1613 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Surani, M.A. Imprinting and the initiation of gene silencing in the germ line. Cell 93, 309–312 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  10. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Holländer, G.A. et al. Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121 ( 1998).

    Article  PubMed  Google Scholar 

  12. Nolan, G.P., Fiering, S., Nicolas, J.-F. & Herzenberg, L.A. Fluorescence-activated cell analysis and sorting of viable mammmalian cells based on β-D-galactosidase activity after transduction of Escherichia coli lac-Z. Proc. Natl Acad. Sci. USA 85, 2603–2607 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rolink, A.G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol. 28, 3738–3748 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  14. Busslinger, M., Klix, N., Pfeffer, P., Graninger, P.G. & Kozmik, Z. Deregulation of PAX-5 by translocation of the Eμ enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc. Natl Acad. Sci. USA 93, 6129–6134 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panning, B. & Jaenisch, R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 93, 305 –308 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Held, W., Roland, J. & Raulet, D.H. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature 376, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Held, W. & Kunz, B. An allele-specific, stochastic gene expression process controls the expression of multiple Ly49 family genes and generates a diverse, MHC-specific NK cell receptor repertoire. Eur. J. Immunol. 28, 2407–2416 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Bix, N. & Locksley, R.M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  19. Rivière, I., Sunshine, M.J. & Littman, D.R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217– 228 (1998).

    Article  PubMed  Google Scholar 

  20. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Knoll, J.H.M., Cheng, S.-D. & Lalande, M. Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nature Genet. 6, 41–46 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  22. Panning, B. & Jaenisch, R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 10, 1991–2002 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 6, 1589–1607 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  24. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143– 156 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Forejt, J. & Gregorová, S. Genetic analysis of genomic imprinting: an imprintor-1 gene controls inactivation of the paternal copy of the mouse Tme locus. Cell 70, 443–450 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Stöger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  PubMed  Google Scholar 

  27. Smrzka, O.W. et al. Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum. Mol. Genet. 4, 1945–1952 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Ghia, P. et al. Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med. 184, 2217–2229 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rolink, A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187– 194 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, L.-J., Ord, D.C., Hughes, A.L. & Tedder, T.F. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. J. Immunol. 147, 1424– 1432 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Georgopoulos and D. Barlow for plasmids, B. Panning for advice on RNA-FISH and J. Forejt for PWD mice. This work was partly financed by the Austrian Industrial Research Promotion Fund. Z.K. was supported by GACR (grant no. 204/96/0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinrad Busslinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nutt, S., Vambrie, S., Steinlein, P. et al. Independent regulation of the two Pax5 alleles during B-cell development . Nat Genet 21, 390–395 (1999). https://doi.org/10.1038/7720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing