Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1

An Erratum to this article was published on 01 December 2000

Abstract

Bone formation by osteoblasts is essential for skeletal growth and remodeling. Fra-1 is a c-Fos-related protein belonging to the AP-1 family of transcription factors. Here we show that transgenic mice overexpressing Fra-1 in various organs develop a progressive increase in bone mass leading to osteosclerosis of the entire skeleton, which is due to a cell-autonomous increase in the number of mature osteoblasts. Moreover, osteoblast differentiation, but not proliferation, was enhanced and osteoclastogenesis was also elevated in vitro. These data indicate that, unlike c-Fos, which causes osteosarcomas, Fra-1 specifically enhances bone formation, which may be exploited to stimulate bone formation in pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of fra-1 transgenic mice.
Figure 2: Radiological and histological analysis.
Figure 3: In vivo analysis of bone formation of fra-1 transgenic mice.
Figure 4: Analysis of fra-1 transgenic osteoblasts and osteoclasts in vitro.
Figure 5: Molecular analysis of fra-1 transgenic osteoblasts.

Similar content being viewed by others

References

  1. Erlebacher, A., Filvaroff, E.H., Gitelman, S.E. & Derynck, R. Toward a molecular understanding of skeletal development. Cell 80, 371–378 ( 1995).

    Article  CAS  Google Scholar 

  2. Karsenty, G. The genetic transformation of bone biology. Genes Dev 13, 3037–3051 (1999).

    Article  CAS  Google Scholar 

  3. Chambers, T.J. Regulation of the differentiation and function of osteoclasts. J Pathol., in press (2000).

  4. Angel, P. & Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129–157 ( 1991).

    CAS  PubMed  Google Scholar 

  5. McCabe, L.R. et al. Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra- 2 and Jun D during differentiation. Endocrinology 137 , 4398–4408 (1996).

    Article  CAS  Google Scholar 

  6. Grigoriadis, A.E., Wang, Z.Q. & Wagner, E.F. Fos and bone cell development: lessons from a nuclear oncogene. Trends Genet. 11, 436– 441 (1995).

    Article  CAS  Google Scholar 

  7. Grigoriadis, A.E., Schellander, K., Wang, Z.Q. & Wagner, E.F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122, 685– 701 (1993).

    Article  CAS  Google Scholar 

  8. Johnson, R.S., Spiegelman, B.M. & Papaioannou, V. Pleiotropic effects of a null mutation in the c- fos proto-oncogene. Cell 71, 577– 586 (1992).

    Article  CAS  Google Scholar 

  9. Wang, Z.Q. et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741–745 ( 1992).

    Article  CAS  Google Scholar 

  10. Grigoriadis, A.E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443– 448 (1994).

    Article  CAS  Google Scholar 

  11. Cohen, D.R. & Curran, T. fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell Biol. 8, 2063–2069 (1988).

    Article  CAS  Google Scholar 

  12. Cohen, D.R., Ferreira, P.C., Gentz, R., Franza, B.R., Jr. & Curran, T. The product of a fos-related gene, fra-1, binds cooperatively to the AP- 1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes . Genes Dev. 3, 173–184 (1989).

    Article  CAS  Google Scholar 

  13. Matsuo, K. et al. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nature Genet. 24, 184– 187 (2000).

    Article  CAS  Google Scholar 

  14. Wisdon, R. & Verma, I.M. Transformation by Fos proteins requires a C-terminal transactivation domain. Mol. Cell Biol. 13, 7429–7438 (1993).

    Article  CAS  Google Scholar 

  15. Owens, J.M., Matsuo, K., Nicholson, G.C., Wagner, E.F. & Chambers, T.J. Fra-1 potentiates osteoclastic differentiation in osteoclast-macrophage precursor cell lines. J. Cell Physiol. 179, 170–178 (1999).

    Article  CAS  Google Scholar 

  16. Filvaroff, E. & Derynck, R. Bone remodelling: a signalling system for osteoclast regulation. Curr. Biol. 8, R679–682 (1998).

    Article  CAS  Google Scholar 

  17. Kim, S.J. et al. Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol. Cell Biol. 10, 1492–1497 (1990).

    Article  CAS  Google Scholar 

  18. Kajimoto, Y. & Umayahara, Y. AP-1-like motif as a key to understanding the insulin-like growth factor I (IGF-I) gene regulation. Endocr. J. 45, 1–12 ( 1998).

    Article  CAS  Google Scholar 

  19. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 ( 1996).

    Article  CAS  Google Scholar 

  20. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  Google Scholar 

  21. Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13, 1025 –1036 (1999).

    Article  CAS  Google Scholar 

  22. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling aging. Nature 390, 45– 51 (1997).

    Article  CAS  Google Scholar 

  23. Li, B. et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nature Genet 24, 304– 308 (2000).

    Article  CAS  Google Scholar 

  24. Schreiber, M. et al. Structure and chromosomal assignment of the mouse fra-1 gene, and its exclusion as a candidate gene for oc (osteosclerosis). Oncogene 15, 1171–1178 (1997).

    Article  CAS  Google Scholar 

  25. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

  26. Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125 (1999).

    Article  CAS  Google Scholar 

  27. Plenk, H., Jr. in Techniques of biocompatibility testing, Vol. 1 (ed. Williams, D.F.) 35–81 (CRC Press, Boca Raton Florida, 1986).

    Google Scholar 

  28. Recker, R.R. Bone histomorphometry: techniques and interpretation (CRC Press, Boca Raton Florida, 1983).

    Google Scholar 

  29. Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987).

    Article  CAS  Google Scholar 

  30. Kratochwil, K. et al. Retrovirus-induced insertional mutation in Mov13 mice affects collagen I expression in a tissue-specific manner. Cell 57, 807–816 ( 1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kratochwil for his generous help with kidney capsule transplantation experiments, and D. Lallemand, M. Yaniv and G. Karsenty for providing antibodies. We also thank G. Christofori, A. Grigoriadis and M. Cotten for critical reading of the manuscript. This work was supported by a Marie-Curie-Fellowship from the European Community to W.J. (ERBFMBICT961780) and a TMR postdoctoral stipend to J.P.D. (ERBFMRX CT960044). This work was partially supported by the Austrian Science Foundation (S07406-MOB) and the Austrian Industrial Research Promotion Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin F. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jochum, W., David, JP., Elliott, C. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6, 980–984 (2000). https://doi.org/10.1038/79676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing