Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cellular calculus for signal integration by T cells

Abstract

During an immune response numerous receptor-mediated signals delivered to T cells direct their proliferation, survival and differentiation. Here, we describe a quantitative model and in vitro methods for assessing the “calculus” used by T cells to process these multiple signals. The model reveals how T cells convert independently received signals into linear additive effects on division times which, in turn, amplify T cell number exponentially. These results explain why so many ligands can each appear obligatory for T cell activation and argue for a re-examination of the two-signal theory as the basis for decisions between tolerance and activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measuring independent parameters of T cell proliferation: time to first division and division cycle time.
Figure 2: Costimulation reduces mean time to first division.
Figure 3: Additive effect of mixing signals from costimulation and cytokines.
Figure 4: Four-parameter model predicts total cell numbers.
Figure 5: Cell numbers predicted by four-parameter model varying μ td1 and b(>0).

Similar content being viewed by others

References

  1. Chambers, C. A. & Allison, J. P. Co–stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Sperling, A. I. & Bluestone, J. A. The complexities of T–cell co-stimulation: CD28 and beyond. Immunol. Rev. 153, 155–82 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  3. Grewal, I. S. & Flavell, R. A. The role of CD40 ligand in costimulation and T–cell activation. Immunol. Rev. 153, 85–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Janeway, C. A. Jr & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–85 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Bachmann, M. F. et al. Distinct roles for LFA–1 and CD28 during activation of naïve T cells: adhesion versus costimulation. Immunity 7, 549–57 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  6. Cantrell, D. A. & Smith, K. A. The interleukin–2 T–cell system: a new cell growth model. Science 224, 1312–1316 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, K. A. Interleukin–2: inception, impact, and implications. Science 240, 1169–1176 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  8. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145– 173 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL–4 directs the development of Th2–like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  10. Seder, R. A. & Paul, W. E. Acquisition of lymphokine–producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263– 74 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Gett, A. V. & Hodgkin, P. D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation . Proc. Natl Acad. Sci. USA 95, 9488– 93 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–6 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naïve and effector T cells. Immunity 8 , 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Germann, T. et al. Interleukin-12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Th1) but not on Th2 cells. Eur. J. Immunol. 23, 1762–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Estaquier, J. et al. T helper type 1/T helper type 2 cytokines and T cell death: preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J. Exp. Med. 182, 1759– 67 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–76 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, M., Hu-Li, J. & Paul, W. E. IL-4/B cell stimulatory factor 1 stimulates T cell growth by an IL-2-independent mechanism. J. Immunol. 141, 504–11 (1988).

    CAS  PubMed  Google Scholar 

  20. Fernandez-Botran, R., Sanders, V. M., Mosmann, T. R. & Vitetta, E. S. Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells. J. Exp. Med. 168, 543–58 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Pfeiffer, C. et al. Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 181, 1569– 1574 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell, L. C., Davis, L. S. & Lipsky, P. E. Promotion of human T lymphocyte proliferation by IL-4. J. Immunol. 142, 1548– 1557 (1989).

    CAS  PubMed  Google Scholar 

  23. Kishimoto, H. & Sprent, J. Strong TCR ligation without costimulation causes rapid onset of fas-dependent apoptosis of naïve murine CD4+ T cells. J. Immunol. 163, 1817 –1826 (1999).

    CAS  PubMed  Google Scholar 

  24. Vella, A., Teague, T. K., Ihle, J., Kappler, J. & Marrack, P. Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: Stat6 is probably not required for the effect of IL-4. J. Exp. Med. 186, 325–330 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lenardo, M. J. Interleukin-2 programs mouse alpha beta T lymphocytes for apoptosis. Nature 353, 858–61 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  26. Russell, J. H., White, C. L., Loh, D. Y. & Meleedy-Rey, P. Receptor-stimulated death pathway is opened by antigen in mature T cells. Proc. Natl Acad. Sci. USA 88, 2151–5 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Dhein, J., Walczak, H., Baumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) . Nature 373, 438–41 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xl. Immunity 3, 87 –98 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Sperling, A. I. et al. CD28/B7 interactions deliver a unique signal to naïve T cells that regulates cell survival but not early proliferation. J. Immunol. 157, 3909–17 (1996).

    CAS  PubMed  Google Scholar 

  31. Lafferty, K. J. & Cunningham, A. J. A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci. 53, 27–42 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Lafferty, K. J., Prowse, S. J., Simeonovic, C. J. & Warren, H. S. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu. Rev. Immunol. 1, 143– 73 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Green, J.M. et al. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1, 501–508 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  34. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609– 12 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Lindstein, T., June, C. H., Ledbetter, J. A., Stella, G. & Thompson, C. B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–43 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  36. Fraser, J. D., Irving, B. A., Crabtree, G. R. & Weiss, A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 25, 313– 316 (1991).

    Article  Google Scholar 

  37. Seder, R. A., Germain, R. N., Linsley, P. S. & Paul, W. E. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T cell priming for IL-4 and interferon γ production. J. Exp. Med. 179, 299–304 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Bretscher, P. & Cohn, M. A theory of self-nonself discrimination . Science 169, 1042–1049 (1970).

    Article  CAS  PubMed  Google Scholar 

  39. Bretscher, P. A. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl Acad. Sci. USA 96, 185 –90 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–80 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Schwartz, R. H. Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med. 184, 1–8 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  42. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Krummel, M. F. & Allison, J. P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533– 40 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation . Immunity 1, 405–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Leo, O., Foo, M., Sachs, D.H., Samelson, L.E. & Bluestone, J.A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA 84, 1374–1378 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harding, F. A., McArthur, J., Gross, J. A., Raulet, D. & Allison, J. P. CD28 mediated signalling costimulated murine T cells and prevents induction of anergy in T cell clones. Nature 356, 607–609 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  47. Hasbold, J. et al. Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell Biol. 77, 516–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Hodgkin, P. D., Lee, J. H. & Lyons, A. B. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Basten, A. Baxter, M. Davenport, B. Fazekas de St Groth and S. Tangye for suggestions on the manuscript, and J. Allison and B. Castle for providing reagents. We also acknowledge the former professor of mathematics at Padua University who taught us how to combine experiment and mathematics to determine the outcome of interacting independent forces. Supported by a postgraduate scholarship from the University of Sydney (to A.G.) and grants from the NHMRC and the Medical Foundation of the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Hodgkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gett, A., Hodgkin, P. A cellular calculus for signal integration by T cells. Nat Immunol 1, 239–244 (2000). https://doi.org/10.1038/79782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing