Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-mismatch detection using gold-quenched fluorescent oligonucleotides

An Erratum to this article was published on 01 July 2001

Abstract

Here we describe a hybrid material composed of a single-stranded DNA (ssDNA) molecule, a 1.4 nm diameter gold nanoparticle, and a fluorophore that is highly quenched by the nanoparticle through a distance-dependent process. The fluorescence of this hybrid molecule increases by a factor of as much as several thousand as it binds to a complementary ssDNA. We show that this composite molecule is a different type of molecular beacon with a sensitivity enhanced up to 100-fold. In competitive hybridization assays, the ability to detect single mismatch is eightfold greater with this probe than with other molecular beacons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawings of the two conformations of the dye–oligonucleotide–gold conjugate and of the gold-quenched molecular beacon.
Figure 2: Gel electrophoresis of reaction products.
Figure 3: Efficiency of the quenching of gold nanoparticles.
Figure 4: Comparison of single-mismatch detection with gold-quenched beacons versus DABCYL-quenched beacons.

Similar content being viewed by others

References

  1. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  2. Alivisatos, A.P. et al. Organization of nanocrystal molecules using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  3. Mitchell, G.P., Mirkin, C.A. & Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    Article  CAS  Google Scholar 

  4. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  5. Schultz, S., Smith, D.R., Mock, J.J. & Schultz, D.A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).

    Article  CAS  Google Scholar 

  6. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  Google Scholar 

  7. Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A. & Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998).

    Article  CAS  Google Scholar 

  8. Andrew, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  Google Scholar 

  9. Loweth, C.J., Caldwell, W.B., Peng, X.G., Alivisatos, A.P. & Schultz, P.G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Edn. Engl. 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  10. Niemeyer, C.M., Burger, W. & Peplies, J. Covalent DNA–Streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew. Chem. Int. Edn. Engl. 37, 2265–2268 (1998).

    Article  CAS  Google Scholar 

  11. Storhoff, J.J. et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122, 4640–4650 (2000).

    Article  CAS  Google Scholar 

  12. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  13. Bonnet, G., Tyagi, S., Libchaber, A. & Kramer, F.R. Thermodynamic basis of the enhancement specificity of structured DNA probes. Proc. Natl. Acad. Sci. USA 96, 6171–6176 (1999).

    Article  CAS  Google Scholar 

  14. Bonnet, G., Krichevsky, O., & Libchaber, A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. USA 95, 8602–8606 (1998).

    Article  CAS  Google Scholar 

  15. Marras, S.A.E., Kramer, F.R. & Tyagi, S. Multiplex detection of single-nucleotide variations using molecular beacons. Genet. Anal.-Biomol. E. 14, 151–156 (1999).

    Article  CAS  Google Scholar 

  16. Steemers, F.J., Ferguson, J.A. & Walt, D.R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene array. Nat. Biotechnol. 18, 91–94 (2000).

    Article  CAS  Google Scholar 

  17. Tyagi, S., Bratu, D.P. & Kramer, F.R. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53 (1997).

    Article  Google Scholar 

  18. Vet, J.A.M. et al. Multiples detection of four pathogenic retroviruses using molecular beacons. Proc. Natl. Acad. Sci. USA 96, 6394–6399 (1999).

    Article  CAS  Google Scholar 

  19. Gersten, J. & Nitzan, A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75, 1139–1152 (1981).

    Article  CAS  Google Scholar 

  20. Weitz, D.A., Garoff, S., Gersten, J.I. & Nitzan, A. The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J. Chem. Phys. 78, 5324–5338 (1983).

    Article  CAS  Google Scholar 

  21. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  22. Bonnet, G. & Libchaber, A. Optimal sensitivity in molecular recognition. Physica A 263, 68–77 (1999).

    Article  CAS  Google Scholar 

  23. Chance, R.R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    CAS  Google Scholar 

  24. Lakowicz, J.R. Principles of fluorescence spectroscopy, Edn 2. (Kluwer Academics, New York; 1999).

    Book  Google Scholar 

  25. Kreibig, U. & Vollmer, M. Optical properties of metal clusters. (Springer-Verlag, Berlin; 1995).

    Book  Google Scholar 

  26. Doremus, R.H. Optical properties of small gold particles. J. Chem. Phys. 40, 2389–2396 (1964).

    Article  Google Scholar 

  27. Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C. & Chris Wang, C.R. The shape transition of gold nanorods. Langmuir 15, 701–709 (1999).

    Article  CAS  Google Scholar 

  28. Lyon L.A. et al. Raman spectroscopy. Anal. Chem. 70, 341R–361R (1998).

    Article  CAS  Google Scholar 

  29. Hainfeld, J.F. Undecagold-antibody method. In Colloidal gold: principles, methods and applications, Vol.2. (ed. Hayat, M.A.) 413–429 (Academic Press, San Diego, CA; 1989).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank G. Bonnet for enlightening discussions and suggestions, and for his help with the fluorescence correlation spectroscopy measurements. We thank R. Bar-Ziv, G.V. Shivashankar, T. Tomoda, and A. Mehta for interesting discussions. The help of A. Roll-Mecak and D. Stettler was instrumental in the final writing of this manuscript. We also thank the reviewers for improvement to the manuscript. This research was supported by the Mathers Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Dubertret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubertret, B., Calame, M. & Libchaber, A. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19, 365–370 (2001). https://doi.org/10.1038/86762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing