Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

In vivo molecular target assessment of matrix metalloproteinase inhibition

Abstract

A number of different matrix metalloproteinase (MMP) inhibitors have been developed as cytostatic and anti-angiogenic agents and are currently in clinical testing. One major hurdle in assessing the efficacy of such drugs has been the inability to sense or image anti-proteinase activity directly and non-invasively in vivo. We show here that novel, biocompatible near-infrared fluorogenic MMP substrates can be used as activatable reporter probes to sense MMP activity in intact tumors in nude mice. Moreover, we show for the first time that the effect of MMP inhibition can be directly imaged using this approach within hours after initiation of treatment using the potent MMP inhibitor, prinomastat (AG3340). The developed probes, together with novel near-infrared fluorescence imaging technology will enable the detailed analysis of a number of proteinases critical for advancing the therapeutic use of clinical proteinase inhibitors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MMP-2–sensitive imaging probe.
Figure 2: Characterization of NIRF probe.
Figure 3: MMP-2 enzyme activity in tumor models.
Figure 4: In vivo imaging.
Figure 5: Histology.

References

  1. Ossowski, L., Clunie, G., Masucci, M.T. & Blasi, F. In vivo paracrine interaction between urokinase and its receptor: Effect on tumor cell invasion. J. Cell Biol. 115, 1107–1112 (1991).

    Article  CAS  Google Scholar 

  2. Chambers, A.F. & Matrisian, L.M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89, 1260–1270 (1997).

    Article  CAS  Google Scholar 

  3. Frosch, B.A., Berquin, I., Emmert-Buck, M.R., Moin, K. & Sloane, B.F. Molecular regulation, membrane association and secretion of tumor cathepsin B. APMIS 107, 28–37 (1999).

    Article  CAS  Google Scholar 

  4. Stearns, M.E. & Wang, M. Type IV collagenase (M(r) 72,000) expression in human prostate: Benign and malignant tissue. Cancer Res. 53, 878–883 (1993).

    CAS  PubMed  Google Scholar 

  5. Davies, B. et al. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res. 53, 5365–5369 (1993).

    CAS  PubMed  Google Scholar 

  6. Zucker, S. et al. Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann. N.Y. Acad. Sci. 878, 212–227 (1999).

    Article  CAS  Google Scholar 

  7. Moses, M.A. et al. Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res. 58, 1395–1399 (1998).

    CAS  PubMed  Google Scholar 

  8. Fang, J. et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc. Natl. Acad. Sci. U.S.A. 97, 3884–3889 (2000).

    Article  CAS  Google Scholar 

  9. Morgunova, E. et al. Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science 284, 1667–1670 (1999).

    Article  CAS  Google Scholar 

  10. Whittaker, M., Floyd, C.D., Brown, P. & Gearing, A. Design and therapeutic application of matrix metalloprotease inhibitors. Chem. Rev. 99, 2735–2776 (1999).

    Article  CAS  Google Scholar 

  11. Shalinsky, D.R. et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann. N.Y. Acad. Sci. 878, 236–270 (1999).

    Article  CAS  Google Scholar 

  12. Brown, P. Clinical studies with matrix metalloproteinase inhibitors. APMIS 107, 174–180 (1999).

    Article  CAS  Google Scholar 

  13. Nelson, A.R., Fingleton, B., Rothenberg, M.L. & Matrisian, L.M. Matrix metalloproteinases: Biologic activity and clinical implications. J. Clin. Oncol. 18, 1135–1149 (2000).

    Article  CAS  Google Scholar 

  14. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol. 17, 768–774 (1999).

    Article  CAS  Google Scholar 

  15. Drummond, A.H. et al. Preclinical and clinical studies of MMP inhibitors in cancer. Ann. N.Y. Acad. Sci. 878, 228–235 (1999).

    Article  CAS  Google Scholar 

  16. Wojtowicz-Praga, S. et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol. 16, 2150–2156 (1998).

    Article  CAS  Google Scholar 

  17. Erlichman, C. et al. Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Ann. Oncol. 12, 389–395 (2001).

    Article  CAS  Google Scholar 

  18. Zucker, S. Experimental models to identify antimetastatic drugs: Are we there yet? A position paper. Ann. N.Y. Acad. Sci. 878, 208–211 (1999).

    Article  CAS  Google Scholar 

  19. Haq, M., Shafii, A., Zervos, E.E. & Rosemurgy, A.S. Addition of matrix metalloproteinase inhibition to conventional cytotoxic therapy reduces tumor implantation and prolongs survival in a murine model of human pancreatic cancer. Cancer Res. 60, 3207–3211 (2000).

    CAS  PubMed  Google Scholar 

  20. Van Noorden, C.J. et al. Ala-Pro-cresyl violet, a synthetic fluorogenic substrate for the analysis of kinetic parameters of dipeptidyl peptidase IV (CD26) in individual living rat hepatocytes. Anal. Biochem. 252, 71–77 (1997).

    Article  CAS  Google Scholar 

  21. Van Noorden, C.J. et al. Heterogeneous suppression of experimentally induced colon cancer metastasis in rat liver lobes by inhibition of extracellular cathepsin B. Clin. Exp. Metastasis 16, 159–167 (1998).

    Article  CAS  Google Scholar 

  22. Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A., Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol. 17, 375–378 (1999).

    Article  CAS  Google Scholar 

  23. Tung, C.H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

    CAS  PubMed  Google Scholar 

  24. Marecos, E., Weissleder, R. & Bogdanov, A., Jr. Antibody-mediated versus nontargeted delivery in a human small cell lung carcinoma model. Bioconjug. Chem. 9, 184–191 (1998).

    Article  CAS  Google Scholar 

  25. Seltzer, J.L. et al. Cleavage specificity of human skin type IV collagenase (gelatinase). Identification of cleavage sites in type I gelatin, with confirmation using synthetic peptides. J. Biol. Chem. 265, 20409–20413 (1990).

    CAS  PubMed  Google Scholar 

  26. Niedzwiecki, L., Teahan, J., Harrison, R.K. & Stein, R.L. Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry 31, 12618–12623 (1992).

    Article  CAS  Google Scholar 

  27. Giambernardi, T.A. et al. Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol. 16, 483–496 (1998).

    Article  CAS  Google Scholar 

  28. Knight, C.G., Willenbrock, F. & Murphy, G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 296, 263–266 (1992).

    Article  CAS  Google Scholar 

  29. Callahan, R.J., Bogdanov, A., Jr., Fischman, A.J., Brady, T.J. & Weissleder, R. Preclinical evaluation and Phase I clinical trial of a 99mTc-labeled synthetic polymer used in blood pool imaging. Am. J. Roentgenol. 171, 137–143 (1998).

    Article  CAS  Google Scholar 

  30. Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N.Y. Acad. Sci. 838, 29–45 (1998).

    Article  CAS  Google Scholar 

  31. Mahmood, U., Tung, C.H., Bogdanov, A., Jr. & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213, 866–870 (1999).

    Article  CAS  Google Scholar 

  32. Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. U.S.A. 97, 2767–2772 (2000).

    Article  CAS  Google Scholar 

  33. Lozonschi, L. et al. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res. 59, 1252–1258 (1999).

    CAS  PubMed  Google Scholar 

  34. Maekawa, R. et al. Correlation of antiangiogenic and antitumor efficacy of N-biphenyl sulfonyl-phenylalanine hydroxiamic acid (BPHA), an orally-active, selective matrix metalloproteinase inhibitor. Cancer Res. 59, 1231–1235 (1999).

    CAS  PubMed  Google Scholar 

  35. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  Google Scholar 

  36. Tsukifuji, R., Tagawa, K., Hatamochi, A. & Shinkai, H. Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis. Br. J. Cancer 80, 1087–1091 (1999).

    Article  CAS  Google Scholar 

  37. Plantner, J.J., Jiang, C. & Smine, A. Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration. Exp. Eye Res. 67, 637–645 (1998).

    Article  CAS  Google Scholar 

  38. Holskin, B.P. et al. A continuous fluorescence-based assay of human cytomegalovirus protease using a peptide substrate. Anal. Biochem. 227, 148–155 (1995).

    Article  CAS  Google Scholar 

  39. Ishiguro, N., Ito, T., Miyazaki, K. & Iwata, H. Matrix metalloproteinases, tissue inhibitors of metalloproteinases, and glycosaminoglycans in synovial fluid from patients with rheumatoid arthritis. J. Rheumatol. 26, 34–40 (1999).

    CAS  PubMed  Google Scholar 

  40. Giraudon, P., Buart, S., Bernard, A. & Belin, M.F. Cytokines secreted by glial cells infected with HTLV-I modulate the expression of matrix metalloproteinases (MMPs) and their natural inhibitor (TIMPs): Possible involvement in neurodegenerative processes. Mol. Psychiatry 2, 107–110, 184 (1997).

    Article  CAS  Google Scholar 

  41. Tung, C.H., Bredow, S., Mahmood, U. & Weissleder, R. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug. Chem. 10, 892–896 (1999).

    Article  CAS  Google Scholar 

  42. Brown, P.D., Levy, A.T., Margulies, I.M., Liotta, L.A. & Stetler-Stevenson, W.G. Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res. 50, 6184–6191 (1990).

    CAS  PubMed  Google Scholar 

  43. Collier, I.E. et al. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 263, 6579–6587 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Bogdanov for providing the graft copolymer and U. Mahmood and A. Moore for technical assistance in imaging and animal preparation. The authors also gratefully acknowledge the assistance of S. Bredow for optimizing RT-PCR and zymography conditions. The authors would also like to thank Agouron Pharmaceuticals and Pfizer for providing prinomastat, and R. Feeley, S. Gregory and D. Shalinsky (Department of Research Pharmacology) for helpful discussions and critical review of the manuscript. This project is supported in part by NIH CA088365 and a RSNA seed grant. C.B. was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ching-Hsuan Tung or Ralph Weissleder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremer, C., Tung, CH. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7, 743–748 (2001). https://doi.org/10.1038/89126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/89126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing