Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Body composition phenotypes in pathways to obesity and the metabolic syndrome

Abstract

Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height2 (H2), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI–FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H2) and an FFM index (FFM/H2), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. James WP, Ferro-Luzzi A, Waterlow JC . Definition of chronic energy deficiency in adults. Report of a working party of the International Dietary Energy Consultative Group. Eur J Clin Nutr 1988; 42: 969–981.

    CAS  Google Scholar 

  2. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL . Indices of relative weight and obesity. J Chronic Dis l 972; 25: 329–343.

    Google Scholar 

  3. Garrow JS . Treat obesity seriously—a clinical manual. Churchill Livingstone: London, 1981.

    Google Scholar 

  4. Norgan NG . Population differences in body composition in relation to body mass index. Eur J Clin Nutr 1994; 48 (Suppl 3): S10–S27.

    PubMed  Google Scholar 

  5. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation (WHO Technical Report Series (894) 2000.

  6. Elia M . Effect of starvation and very low calorie diets on protein–energy interrelationships in lean and obese subjects. In: Scrimshaw NS, Schurch B (eds). Protein–Energy Interactions. IDECG: Lausanne, Switzerland, 1991. pp 249–284.

    Google Scholar 

  7. Keys A, Brozek J, Henschel A, Mickelson O, Taylor HL . The Biology of Human Starvation. University of Minnesota Press: Minneapolis, MN, 1950.

    Google Scholar 

  8. Dulloo AG, Jacquet J . The control of partitioning between protein and fat during human starvation: its internal determinants and biological significance. Br J Nutr 1999; 82: 339–356.

    CAS  PubMed  Google Scholar 

  9. Hull HR, Thornton J, Wang J, Pierson Jr RN, Kaleem Z, Pi-Sunyer X et al. Fat-free mass index: changes and race/ethnic differences in adulthood. Int J Obes 2010. (e-pub ahead of print).

  10. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al., Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373: 1083–1096.

    Google Scholar 

  11. Snijder MB, van Dam RM, Visser M, Seidell JC . What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol 2006; 35: 83–92.

    CAS  Google Scholar 

  12. Allison DB, Faith MS, Heo M, Kotler DP . Hypothesis concerning the U-shaped relation between body mass index and mortality. Am J Epidemiol 1997; 146: 339–349.

    CAS  Google Scholar 

  13. Heymsfield SB, Scherzer R, Pietrobelli A, Lewis CE, Grunfeld C . Body mass index as a phenotypic expression of adiposity: quantitative contribution of muscularity in a population-based sample. Int J Obes 2009; 33: 1363–1373.

    CAS  Google Scholar 

  14. Webster JJ, Hesp R, Garrow JS . The composition of excess weight in obese women estimated by body density, total body water and total body potassium. Hum Nutr Clin Nutr 1984; 38C: 299–306.

    Google Scholar 

  15. Gallagher D, Visser M, Sepúlveda D, Pierson RN, Harris T, Heymsfield SB . How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 1996; 143: 228–239.

    CAS  Google Scholar 

  16. Jackson AS, Stanforth PR, Gagnon J, Rankinen T, Leon AS, Rao DC et al. The effect of sex, age and race on estimating percentage body fat from body mass index: the Heritage Family Study. Int J Obes 2002; 26: 789–796.

    CAS  Google Scholar 

  17. Meeuwsen S, Horgan GW, Elia M . The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin Nutr 2010; 29: 560–566.

    CAS  PubMed  Google Scholar 

  18. Bosy-Westphal A, Geisler C, Onur S, Korth O, Selberg O, Schrezenmeir J et al. Value of body fat mass vs anthropometric obesity indices in the assessment of metabolic risk factors. Int J Obes 2006; 30: 475–483.

    CAS  Google Scholar 

  19. Deurenberg P, Deurenberg-Yap M, Guricci S . Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes Rev 2002; 3: 141–146.

    CAS  Google Scholar 

  20. Luke A . Ethnicity and the BMI-body fat relationship. Br J Nutr 2009; 102: 485–487.

    CAS  PubMed  Google Scholar 

  21. Wulan SN, Westerterp KR, Plasqui G . Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas 2010; 65: 315–319.

    CAS  PubMed  Google Scholar 

  22. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363: 157–163.

    Google Scholar 

  23. Luke A, Durazo-Arvizu R, Rotimi C, Prewitt TE, Forrester T, Wilks R et al. Relation between body mass index and body fat in black population samples from Nigeria, Jamaica, and the United States. Am J Epidemiol 1997; 145: 620–628.

    CAS  PubMed  Google Scholar 

  24. Deurenberg P . Universal cut-off BMI points for obesity are not appropriate. Br J Nutr 2001; 85: 135–136.

    Article  CAS  Google Scholar 

  25. VanItallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA . Height-normalized indices of the body's fat-free mass and fat mass: potentially useful indicators of nutritional status. Am J Clin Nutr 1990; 52: 953–959.

    CAS  Google Scholar 

  26. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998; 147: 755–763.

    CAS  PubMed  Google Scholar 

  27. Schutz Y, Kyle UU, Pichard C . Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y. Int J Obes 2002; 26: 953–960.

    CAS  Google Scholar 

  28. He Q, Heo M, Heshka S, Wang J, Pierson Jr RN, Albu J et al. Total body potassium differs by sex and race across the adult age span. Am J Clin Nutr 2003; 78: 72–77.

    CAS  PubMed  Google Scholar 

  29. Wells JC . A Hattori chart analysis of body mass index in infants and children. Int J Obes 2000; 24: 325–329.

    CAS  Google Scholar 

  30. Nakao T, Komiya S . Reference norms for a fat-free mass index and fat mass index in the Japanese child population. J Physiol Anthropol Appl Human Sci 2003; 22: 293–298.

    PubMed  Google Scholar 

  31. Demerath EW, Schubert CM, Maynard LM, Sun SS, Chumlea WC, Pickoff A et al. Do changes in body mass index percentile reflect changes in body composition in children? Data from the Fels Longitudinal Study. Pediatrics 2006; 117: 487–495.

    Google Scholar 

  32. Eissa MA, Dai S, Mihalopoulos NL, Day RS, Harrist RB, Labarthe DR . Trajectories of fat mass index, fat free-mass index, and waist circumference in children: Project HeartBeat. Am J Prev Med 2009; 37 (Suppl 1): S34–S39.

    PubMed  PubMed Central  Google Scholar 

  33. Elia M . Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN (eds). Energy metabolism: tissue determinants and cellular corollaries. Raven Press Ltd: New York, NY, 1992. pp 61–79.

    Google Scholar 

  34. He Q, Heshka S, Albu J, Boxt L, Krasnow N, Elia M et al. Smaller organ mass with greater age, except for heart. J Appl Physiol 2009; 106: 1780–1784.

    PubMed  PubMed Central  Google Scholar 

  35. Gallagher D, Albu J, He Q, Heshka S, Boxt L, Krasnow N et al. Small organs with a high metabolic rate explain lower resting energy expenditure in African American than in white adults. Am J Clin Nutr 2006; 83: 1062–1067.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ortiz O, Russell M, Daley TL, Baumgartner RN, Waki M, Lichtman S et al. Differences in skeletal muscle and bone mineral mass between black and white females and their relevance to estimates of body composition. Am J Clin Nutr 1992; 55: 8–13.

    CAS  Google Scholar 

  37. Weyer C, Snitker S, Bogardus C, Ravussin E . Energy metabolism in African Americans: potential risk factors for obesity. Am J Clin Nutr 1999; 70: 13–20.

    CAS  PubMed  Google Scholar 

  38. Vague J . The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout and uric calculous disease. Am J Clin Nutr 1956; 4: 20–34.

    CAS  PubMed  Google Scholar 

  39. Després JP, Arsenault BJ, Côté M, Cartier A, Lemieux I . Abdominal obesity: the cholesterol of the 21st century? Can J Cardiol 2008; 24 (Suppl D): 7D–12D.

    PubMed  PubMed Central  Google Scholar 

  40. Thörne A, Lönnqvist F, Apelman J, Hellers G, Arner P . A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes 2002; 26: 193–199.

    Google Scholar 

  41. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004; 350: 2549–2557.

    CAS  PubMed  Google Scholar 

  42. Giugliano G, Nicoletti G, Grella E, Giugliano F, Esposito K, Scuderi N et al. Effect of liposuction on insulin resistance and vascular inflammatory markers in obese women. Br J Plast Surg 2004; 57: 190–194.

    CAS  PubMed  Google Scholar 

  43. Frayn KN . Visceral fat and insulin resistance—causative or correlative. Br J Nutr 2000; 83 (Suppl 1): S71–S77.

    CAS  PubMed  Google Scholar 

  44. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE . Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46: 1579–1585.

    CAS  Google Scholar 

  45. Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM . Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes Res 1997; 5: 93–99.

    CAS  PubMed  Google Scholar 

  46. Tulloch-Reid MK, Hanson RL, Sebring NG, Reynolds JC, Premkumar A, Genovese DJ et al. Both subcutaneous and visceral adipose tissue correlate highly with insulin resistance in African Americans. Obes Res 2004; 12: 1352–1359.

    CAS  Google Scholar 

  47. Goel K, Misra A, Vikram NK, Poddar P, Gupta N . Subcutaneous abdominal adipose tissue is associated with the metabolic syndrome in Asian Indians independent of intra-abdominal and total body fat. Heart 2010; 96: 579–583.

    PubMed  Google Scholar 

  48. Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL . Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr 2007; 86: 353–359.

    CAS  PubMed  Google Scholar 

  49. Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001; 50: 425–435.

    CAS  Google Scholar 

  50. Okura T, Nakata Y, Yamabuki K, Tanaka K . Regional body composition changes exhibit opposing effects on coronary heart disease risk factors. Arterioscler Thromb Vasc Biol 2004; 24: 923–929.

    CAS  PubMed  Google Scholar 

  51. Markman B, Barton Jr FE . Anatomy of the subcutaneous tissue of the trunk and lower extremity. Plast Reconstr Surg 1987; 80: 248–254.

    CAS  PubMed  Google Scholar 

  52. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG . Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes 2004; 28 (Suppl 4): S58–S65.

    CAS  Google Scholar 

  53. Unger RH . Weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003; 144: 5159–5165.

    CAS  Google Scholar 

  54. Barandier C, Montani JP, Yang Z . Mature adipocytes and perivascular adipose tissue stimulate vascular smooth muscle cell proliferation: effects of aging and obesity. Am J Physiol Heart Circ Physiol 2005; 289: H1807–H1813.

    CAS  PubMed  Google Scholar 

  55. Thalmann S, Meier CA . Local adipose tissue depots as cardiovascular risk factors. Cardiovasc Res 2007; 75: 690–701.

    CAS  PubMed  Google Scholar 

  56. Goodpaster BH, Thaete FL, Kelley DE . Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr 2000; 71: 885–892.

    CAS  Google Scholar 

  57. Gallagher D, Kuznia P, Heshka S, Albu J, Heymsfield SB, Goodpaster B et al. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr 2005; 81: 903–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Manolopoulos KN, Karpe F, Frayn KN . Gluteofemoral body fat as a determinant of metabolic health. Int J Obes 2010; 34: 949–959.

    CAS  Google Scholar 

  59. Frayn KN . Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002; 45: 1201–1210.

    CAS  Google Scholar 

  60. Danforth Jr E . Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000; 26: 13.

    CAS  PubMed  Google Scholar 

  61. Virtue S, Vidal-Puig A . Adipose tissue expandability, lipotoxicity and the metabolic syndrome--an allostatic perspective. Biochim Biophys Acta 2010; 1801: 338–349.

    CAS  PubMed  Google Scholar 

  62. Solinas G, Karin M . JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 2010; 24: 2596–2611.

    CAS  PubMed  Google Scholar 

  63. Stern JS, Batchelor BR, Hollander N, Cohn CK, Hirsch J . Adipose-cell size and immunoreactive insulin levels in obese and normal-weight adults. Lancet 1972; 2: 948–951.

    CAS  PubMed  Google Scholar 

  64. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE . Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    CAS  Google Scholar 

  65. Hirsch J, Knittle JL . Cellularity of obese and nonobese human adipose tissue. Fed Proc 1970; 29: 1516–1521.

    CAS  PubMed  Google Scholar 

  66. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE . Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    CAS  Google Scholar 

  67. Lonn M, Mehlig K, Bengtsson C, Lissner L . Adipocyte size predicts incidence of type 2 diabetes in women (Swedish). FASEB J 2010; 24: 326–331.

    PubMed  Google Scholar 

  68. Jernås M, Palming J, Sjöholm K, Jennische E, Svensson PA, Gabrielsson BG et al. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 2006; 20: 1540–1542.

    PubMed  Google Scholar 

  69. Drolet R, Richard C, Sniderman AD, Mailloux J, Fortier M, Huot C et al. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes 2008; 32: 283–291.

    CAS  Google Scholar 

  70. Tchoukalova YD, Koutsari C, Karpyak MV, Votruba SB, Wendland E, Jensen MD . Subcutaneous adipocyte size and body fat distribution. Am J Clin Nutr 2008; 87: 56–63.

    CAS  PubMed  Google Scholar 

  71. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.

    CAS  Google Scholar 

  72. Arner E, Westermark PO, Spalding KL, Britton T, Rydén M, Frisén J et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010; 59: 105–109.

    CAS  PubMed  Google Scholar 

  73. Gill T . Epidemiology and health impact of obesity: an Asia Pacific perspective. Asia Pac J Clin Nutr 2006; 15 (Suppl): 3–14.

    PubMed  Google Scholar 

  74. Kurian AK, Cardarelli KM . Racial and ethnic differences in cardiovascular disease risk factors: a systematic review. Ethn Dis 2007; 17: 143–152.

    PubMed  Google Scholar 

  75. Raji A, Seely EW, Arky RA, Simonson DC . Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab 2001; 86: 5366–5371.

    CAS  PubMed  Google Scholar 

  76. Chowdhury B, Lantz H, Sjostrom L . Computed tomography-determined body composition in relation to cardiovascular risk factors in Indian and matched Swedish males. Metabolism 1996; 45: 634–644.

    CAS  Google Scholar 

  77. Park YW, Allison DB, Heymsfield SB, Gallagher D . Larger amounts of visceral adipose tissue in Asian Americans. Obes Res 2001; 9: 381–387.

    CAS  PubMed  Google Scholar 

  78. Hill JO, Sidney S, Lewis CE, Tolan K, Scherzinger AL, Stamm ER . Racial differences in amounts of visceral adipose tissue in young adults: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am J Clin Nutr 1999; 69: 381–387.

    CAS  Google Scholar 

  79. Hoffman DJ, Wang Z, Gallagher D, Heymsfield SB . Comparison of visceral adipose tissue mass in adult African Americans and whites. Obes Res 2005; 13: 66–74.

    Google Scholar 

  80. Despres JP, Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler Thromb Vasc Biol 2000; 20: 1932–1938.

    CAS  PubMed  Google Scholar 

  81. Lovejoy JC, Smith SR, Rood JC . Comparison of regional fat distribution and health risk factors in middle-aged white and African American women: the Healthy Transitions Study. Obes Res 2001; 9: 10–16.

    CAS  Google Scholar 

  82. Misra A, Khurana L . Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int J Obes (Lond) 2010. (e-pub ahead of print).

  83. Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL . Visceral adipose tissue accumulation differs according to ethnic background: result of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr 2007; 86: 353–359.

    CAS  PubMed  Google Scholar 

  84. Gautier JF, Milner MR, Elam E, Chen K, Ravussin E, Pratley RE . Visceral adipose tissue is not increased in Pima Indians compared with equally obese Caucasians and is not related to insulin action or secretion. Diabetologia 1999; 42: 28–34.

    CAS  PubMed  Google Scholar 

  85. Goel K, Misra A, Vikram NK, Poddar P, Gupta N . Subcutaneous abdominal adipose tissue is associated with the metabolic syndrome in Asian Indians independent of intra-abdominal and total body fat. Heart 2010; 96: 579–583.

    PubMed  Google Scholar 

  86. Misra A, Khurana L . Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 2008; 93 (Suppl 1): S9–S30.

    CAS  Google Scholar 

  87. Kohli S, Sniderman AD, Tchernof A, Lear SA . Ethnic-Specific Differences in Abdominal Subcutaneous Adipose Tissue Compartments. Obesity (Silver Spring 2010. (e-pub ahead of print).

  88. Sniderman AD, Bhopal R, Prabhakaran D, Sarrafzadegan N, Tchernof A . Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int J Epidemiol 2007; 36: 220–225.

    Google Scholar 

  89. Yajnik CS, Lubree HG, Rege SS, Naik SS, Deshpande JA, Deshpande SS et al. Adiposity and hyperinsulinemia in Indians are present at birth. J Clin Endocrinol Metab 2002; 87: 5575–5580.

    CAS  Google Scholar 

  90. Katzmarzyk PT, Bray GA, Greenway FL, Johnson WD, Newton Jr RL, Ravussin E et al. Racial differences in abdominal depot-specific adiposity in white and African American adults. Am J Clin Nutr 2010; 91: 7–15.

    CAS  PubMed  Google Scholar 

  91. Liska D, Dufour S, Zern TL, Taksali S, Calí AM, Dziura J et al. Interethnic differences in muscle, liver and abdominal fat partitioning in obese adolescents. PLoS One 2007; 2: e569.

    PubMed  PubMed Central  Google Scholar 

  92. Smith LM, Yao-Borengasser A, Starks T, Tripputi M, Kern PA, Rasouli N . Insulin resistance in African-American and Caucasian women: differences in lipotoxicity, adipokines, and gene expression in adipose tissue and muscle. J Clin Endocrinol Metab 2010; 95: 4441–4448.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Guerrero R, Vega GL, Grundy SM, Browning JD . Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 2009; 49: 791–801.

    PubMed  PubMed Central  Google Scholar 

  94. Lawrence JC, Newcomer BR, Buchthal SD, Sirikul B, Oster RA, Hunter GR et al. Relationship of intramyocellular lipid to insulin sensitivity may differ with ethnicity in healthy girls and women. Obesity (Silver Spring 2010. (e-pub ahead of print).

  95. Yim JE, Heshka S, Albu JB, Heymsfield S, Gallagher D . Femoral-gluteal subcutaneous and intermuscular adipose tissues have independent and opposing relationships with CVD risk. J Appl Physiol 2008; 104: 700–707.

    PubMed  Google Scholar 

  96. Petersen KF, Dufour S, Feng J, Befroy D, Dziura J, Dalla Man C et al. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci (USA) 2006; 103: 18273–18277.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Swiss National Science Foundation (Grant Number 31003A-130481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Dulloo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulloo, A., Jacquet, J., Solinas, G. et al. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes 34 (Suppl 2), S4–S17 (2010). https://doi.org/10.1038/ijo.2010.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.234

Keywords

This article is cited by

Search

Quick links