Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia

Abstract

Current treatments for acute myeloid leukemia (AML) are designed to target rapidly dividing blast populations with limited success in eradicating the functionally distinct leukemia stem cell (LSC) population, which is postulated to be responsible for disease resistance and relapse. We have previously reported high miR-126 expression levels to be associated with a LSC-gene expression profile. Therefore, we hypothesized that miR-126 contributes to ‘stemness’ and is a viable target for eliminating the LSC in AML. Here we first validate the clinical relevance of miR-126 expression in AML by showing that higher expression of this microRNA (miR) is associated with worse outcome in a large cohort of older (60 years) cytogenetically normal AML patients treated with conventional chemotherapy. We then show that miR-126 overexpression characterizes AML LSC-enriched cell subpopulations and contributes to LSC long-term maintenance and self-renewal. Finally, we demonstrate the feasibility of therapeutic targeting of miR-126 in LSCs with novel targeting nanoparticles containing antagomiR-126 resulting in in vivo reduction of LSCs likely by depletion of the quiescent cell subpopulation. Our findings suggest that by targeting a single miR, that is, miR-126, it is possible to interfere with LSC activity, thereby opening potentially novel therapeutic approaches to treat AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Metzeler KH, Maharry K, Kohlschmidt J, Volinia S, Mrozek K, Becker H et al. A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia. Leukemia 2013; 27: 2023–2031.

    Article  CAS  Google Scholar 

  2. Mawad R, Estey EH . Acute myeloid leukemia with normal cytogenetics. Curr Oncol Rep 2012; 14: 359–368.

    Article  Google Scholar 

  3. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    Article  CAS  Google Scholar 

  4. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A . Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int 2007; 7: 9.

    Article  Google Scholar 

  5. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

    Article  CAS  Google Scholar 

  6. Heidel FH, Mar BG, Armstrong SA . Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol 2011; 94: 109–117.

    Article  Google Scholar 

  7. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    Article  CAS  Google Scholar 

  8. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007; 110: 4427–4435.

    Article  CAS  Google Scholar 

  9. Macfarlane LA, Murphy PR . MicroRNA: biogenesis, function and role in cancer. Curr Genomics 2010; 11: 537–561.

    Article  CAS  Google Scholar 

  10. Garzon R, Marcucci G, Croce CM . Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9: 775–789.

    Article  CAS  Google Scholar 

  11. Havelange V, Garzon R, Croce CM . MicroRNAs: new players in acute myeloid leukaemia. Br J Cancer 2009; 101: 743–748.

    Article  CAS  Google Scholar 

  12. Havelange V, Garzon R . MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol 2010; 85: 935–942.

    Article  CAS  Google Scholar 

  13. Marcucci G, Radmacher MD, Mrozek K, Bloomfield CD . MicroRNA expression in acute myeloid leukemia. Curr Hematol Malignancy Rep 2009; 4: 83–88.

    Article  Google Scholar 

  14. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  Google Scholar 

  15. Marcucci G, Mrozek K, Radmacher MD, Bloomfield CD, Croce CM . MicroRNA expression profiling in acute myeloid and chronic lymphocytic leukaemias. Best Practice Res Clin Haematol 2009; 22: 239–248.

    Article  CAS  Google Scholar 

  16. Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrozek K et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol 2013; 31: 2086–2093.

    Article  CAS  Google Scholar 

  17. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.

    Article  CAS  Google Scholar 

  18. Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 2012; 11: 799–811.

    Article  CAS  Google Scholar 

  19. Alachkar H, Santhanam R, Maharry K, Metzeler KH, Huang X, Kohlschmidt J et al. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest 2014; 124: 1512–1524.

    Article  CAS  Google Scholar 

  20. Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res 2013; 19: 2355–2367.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123: 4144–4157.

    Article  CAS  Google Scholar 

  22. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008; 105: 15535–15540.

    Article  CAS  Google Scholar 

  23. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 2013; 32: 548–556.

    Article  Google Scholar 

  24. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  Google Scholar 

  25. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010; 120: 142–156.

    Article  CAS  Google Scholar 

  26. Guan Y, Gerhard B, Hogge DE . Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 2003; 101: 3142–3149.

    Article  CAS  Google Scholar 

  27. Zorko NA, Bernot KM, Whitman SP, Siebenaler RF, Ahmed EH, Marcucci GG et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 2012; 120: 1130–1136.

    Article  CAS  Google Scholar 

  28. Felli N, Felicetti F, Lustri AM, Errico MC, Bottero L, Cannistraci A et al. miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS ONE 2013; 8: e56824.

    Article  CAS  Google Scholar 

  29. huang HT, Lee CT, Yu S, Zon LI, Speck NA . Chromatin remodeling enzyme CHD7 negatively regulate hematopoietic stem cell function. Blood 2013; 112: 2413.

    Google Scholar 

  30. Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 2013; 4: 1022–1034.

    Article  CAS  Google Scholar 

  31. Doulatov S, Notta F, Laurenti E, Dick JE . Hematopoiesis: a human perspective. Cell Stem Cell 2012; 10: 120–136.

    Article  CAS  Google Scholar 

  32. de Leeuw DC, Denkers F, Olthof MC, Rutten AP, Pouwels W, Schuurhuis GJ et al. Attenuation of microRNA-126 expression that drives CD34+38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res 2014; 74: 2094–2105.

    Article  CAS  Google Scholar 

  33. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015; 518: 107–110.

    Article  CAS  Google Scholar 

  34. Velu CS, Chaubey A, Phelan JD, Horman SR, Wunderlich M, Guzman ML et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest 2014; 124: 222–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by CA135332 (GM) CA102031 (GM) and CA140158 (GM and MAC) from National Cancer Institute, National Institutes of Health. AMD was supported by a Pelotonia postdoctoral research grant and AMD and RJL were supported by a Pelotonia Idea grant.

Author contributions

AMD, PN and GM designed the research; CDB, MAC and GM analyzed data and provided financial and administrative support for expression and methylation analyses of AML patients; AMD, PN, XH, DN, GF, HGO, PH, JK, KM, EH, MY, RJL, LJL, BNB, HW, CMC, RG, MAC, CDB and GM performed research and/or critically reviewed and analyzed the data; AMD, PN and GM wrote the paper; and all authors critically reviewed and edited the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Dorrance.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorrance, A., Neviani, P., Ferenchak, G. et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia 29, 2143–2153 (2015). https://doi.org/10.1038/leu.2015.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.139

This article is cited by

Search

Quick links