Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation

Abstract

Changes in the enzymatic activity of protein arginine methyltransferase (PRMT) 5 have been associated with cancer; however, the protein’s role in acute myeloid leukemia (AML) has not been fully evaluated. Here, we show that increased PRMT5 activity enhanced AML growth in vitro and in vivo while PRMT5 downregulation reduced it. In AML cells, PRMT5 interacted with Sp1 in a transcription repressor complex and silenced miR-29b preferentially via dimethylation of histone 4 arginine residue H4R3. As Sp1 is also a bona fide target of miR-29b, the miR silencing resulted in increased Sp1. This event in turn led to transcription activation of FLT3, a gene that encodes a receptor tyrosine kinase. Inhibition of PRMT5 via sh/siRNA or a first-in-class small-molecule inhibitor (HLCL-61) resulted in significantly increased expression of miR-29b and consequent suppression of Sp1 and FLT3 in AML cells. As a result, significant antileukemic activity was achieved. Collectively, our data support a novel leukemogenic mechanism in AML where PRMT5 mediates both silencing and transcription of genes that participate in a ‘yin-yang’ functional network supporting leukemia growth. As FLT3 is often mutated in AML and pharmacologic inhibition of PRMT5 appears feasible, the PRMT5–miR-29b–FLT3 network should be further explored as a novel therapeutic target for AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Fröhling S, Scholl C, Gilliland DG, Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–6295.

    Article  Google Scholar 

  2. Estey E, Döhner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  Google Scholar 

  3. McKenzie SB . Advances in understanding the biology and genetics of acute myelocytic leukemia. Clin Lab Sci 2005; 18: 28–37.

    Google Scholar 

  4. Dombret H . Gene mutation and AML pathogenesis. Blood 2011; 118: 5366–5367.

    Article  CAS  Google Scholar 

  5. Marcucci G, Haferlach T, Döhner H . Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 2011; 29: 475–486.

    Article  CAS  Google Scholar 

  6. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European Leukemia Net. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  7. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2010; 31: 27–36.

    Article  CAS  Google Scholar 

  8. Oki Y, Issa JJ . Epigenetics mechanisms in AML—a target for therapy. Cancer Treat Res 2010; 145: 19–44.

    Article  CAS  Google Scholar 

  9. Ellis L, Atadja PW, Johnstone RW . Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8: 1409–1420.

    Article  CAS  Google Scholar 

  10. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 2014; 32: 548–556.

    Article  Google Scholar 

  11. Blum W, Schwind S, Tarighat SS, Geyer S, Eisfeld A-K, Whitman S et al. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood 2012; 119: 6025–6031.

    Article  CAS  Google Scholar 

  12. Mims A, Walker AR, Huang X, Sun J, Wang H, Santhanam R et al. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2013; 27: 871–878.

    Article  CAS  Google Scholar 

  13. Yang Y, Bedford MT . Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013; 13: 37–50.

    Article  CAS  Google Scholar 

  14. Chung J, Karkhanis V, Tae S, Yan F, Smith P, Ayers LW et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J Biol Chem 2013; 288: 35534–35547.

    Article  CAS  Google Scholar 

  15. Pal S, Sif S . Interplay between chromatin remodelers and protein arginine methyltransferases. J Cell Physiol 2007; 213: 306–315.

    Article  CAS  Google Scholar 

  16. Bedford MT . Arginine methylation at a glance. J Cell Sci 2007; 120: 4243–4246.

    Article  CAS  Google Scholar 

  17. Jansson M, Durant ST, Cho E-C, Sheahan S, Edelmann M, Kessler B et al. Arginine methylation regulates the p53 response. Nat Cell Biol 2008; 10: 1431–1439.

    Article  CAS  Google Scholar 

  18. Guezennec X, Le, Vermeulen M, Brinkman AB, Hoeijmakers WAM, Cohen A, Lasonder E et al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 2006; 26: 843–851.

    Article  Google Scholar 

  19. Bandyopadhyay S, Harris DP, Adams GN, Lause GE, McHugh A, Tillmaand EG et al. HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol Cell Biol 2012; 32: 1202–1213.

    Article  CAS  Google Scholar 

  20. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang D-B et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proc Natl Acad Sci USA 2013; 110: 13516–13521.

    Article  CAS  Google Scholar 

  21. Bedford MT, Richard S . Arginine methylation an emerging regulator of protein function. Mol Cell 2005; 18: 263–272.

    Article  CAS  Google Scholar 

  22. Fay MM, Clegg JM, Uchida KA, Powers MA, Ullman KS . Enhanced arginine methylation of programmed cell death 4 during nutrient deprivation promotes tumor cell viability. J Biol Chem 2014; 289: 17541–17552.

    Article  CAS  Google Scholar 

  23. Scoumanne A, Zhang J, Chen X . PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 2009; 37: 4965–4976.

    Article  CAS  Google Scholar 

  24. Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S . Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 2007; 26: 3558–3569.

    Article  CAS  Google Scholar 

  25. Wang L, Pal S, Sif S . Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 2008; 28: 6262–6277.

    Article  CAS  Google Scholar 

  26. Kim J, Sohn H, Yoon SY, Kim JH, Song KS, Rho S et al. Identification of gastric cancer—related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res 2005; 11: 473–482.

    Google Scholar 

  27. Eckert D, Biermann K, Nettersheim D, Gillis AJM, Steger K, Jäck H-M et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol 2008; 8: 106.

    Article  Google Scholar 

  28. Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 2011; 19: 283–294.

    Article  CAS  Google Scholar 

  29. Pal S, Yun R, Datta A, Lacomis L, Erdjument-bromage H, Kumar J et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc Target Gene cad. Mol Cell Biol 2003; 23: 7475–7487.

    Article  CAS  Google Scholar 

  30. Li H, Li C . Multiple ligand simultaneous docking : orchestrated dancing of ligands in binding sites of protein. J Comput Chem 2010; 31: 2014–2022.

    Article  CAS  Google Scholar 

  31. Li H, Xiao H, Lin L, Jou D, Kumari V, Lin J et al. Drug design targeting protein–protein interactions (PPIs) using multiple ligand simultaneous docking (MLSD) and drug repositioning: discovery of Raloxifene and Bazedoxifene as novel inhibitors of IL-6/GP130 interface. J Med Chem 2014; 57: 632–641.

    Article  CAS  Google Scholar 

  32. Li H, Liu A, Zhao Z, Xu Y, Lin J, Jou D et al. Fragment-based drug design and drug repositioning using multiple ligand simultaneous docking (MLSD): identifying Celecoxib and template compounds as novel inhibitors of signal transducer and activator of transcription 3 (STAT3). J Med Chem 2011; 54: 5592–5596.

    Article  CAS  Google Scholar 

  33. Richard S, Morel M, Cléroux P . Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem J 2005; 388: 379–386.

    Article  CAS  Google Scholar 

  34. Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee J-H et al. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 2002; 3: 641–645.

    Article  CAS  Google Scholar 

  35. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114: 5331–5341.

    Article  CAS  Google Scholar 

  36. Zhang Y-K, Wang H, Leng Y, Li Z-L, Yang Y-F, Xiao F-J et al. Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1. Biochem Biophys Res Commun 2011; 414: 233–239.

    Article  CAS  Google Scholar 

  37. Liu S, Wu L-C, Pang J, Santhanam R, Schwind S, Wu Y-Z et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 2010; 17: 333–347.

    Article  CAS  Google Scholar 

  38. Cook AM, Li L, Ho Y, Lin A, Li L, Stein A et al. Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells. Blood 2014; 123: 2826–2837.

    Article  CAS  Google Scholar 

  39. Gu Z, Gao S, Zhang F, Wang Z, Ma W, Davis RE et al. Protein arginine methyltransferase 5 is essential for growth of lung cancer cells. Biochem J 2012; 446: 235–241.

    Article  CAS  Google Scholar 

  40. Bao X, Zhao S, Liu T, Liu YY, Liu YY, Yang X . Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem 2013; 61: 206–217.

    Article  CAS  Google Scholar 

  41. Nicholas C, Yang J, Peters SB, Bill MA, Baiocchi RA, Yan F et al. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1). PLoS One 2013; 8: e74710.

    Article  CAS  Google Scholar 

  42. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10day schedule of decitabine. Proc Natl Acad Sci USA 2010; 107: 7473–7478.

    Article  CAS  Google Scholar 

  43. Rank G, Cerruti L, Simpson RJ, Moritz RL, Jane SM, Zhao Q . Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood 2010; 116: 1585–1592.

    Article  CAS  Google Scholar 

  44. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  Google Scholar 

  45. Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD . FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat 2009; 12: 81–89.

    Article  CAS  Google Scholar 

  46. Leukemia AM . Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Cancer Institute (Bethesda, MD, USA) (R01-CA140158, GM), a Leukemia SPORE Grant (P50 CA140158), The Leukemia & Lymphoma Society Translational Research Program (RB), The OSU Drug Development Institute (RB and CL), Friends of Jason Gould Foundation (RB) and NIH NINDS R21 (R21NS071346; RB and CL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Li or G Marcucci.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarighat, S., Santhanam, R., Frankhouser, D. et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30, 789–799 (2016). https://doi.org/10.1038/leu.2015.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.308

This article is cited by

Search

Quick links