Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Graphene for batteries, supercapacitors and beyond

Abstract

Graphene has recently enabled the dramatic improvement of portable electronics and electric vehicles by providing better means for storing electricity. In this Review, we discuss the current status of graphene in energy storage and highlight ongoing research activities, with specific emphasis placed on the processing of graphene into electrodes, which is an essential step in the production of devices. We calculate the maximum energy density of graphene supercapacitors and outline ways for future improvements. We also discuss the synthesis and assembly of graphene into macrostructures, ranging from 0D quantum dots, 1D wires, 2D sheets and 3D frameworks, to potentially 4D self-folding materials that allow the design of batteries and supercapacitors with many new features that do not exist in current technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene and supercapacitors.
Figure 2: Synthesis and assembly of graphene.

Similar content being viewed by others

References

  1. Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009). This study established a method for the direct measurement of the quantum capacitance of graphene that tells us about the maximum (theoretical) specific capacitance graphene can achieve.

    CAS  Google Scholar 

  2. Wang, G. et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19, 8378–8384 (2009).

    CAS  Google Scholar 

  3. Kim, H., Park, K. Y., Hong, J. & Kang, K. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Sci. Rep. 4, 5278 (2014).

    CAS  Google Scholar 

  4. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). A comprehensive review describing the physics and chemistry of graphene, and outlining the most promising results and applications achieved so far.

    CAS  Google Scholar 

  5. Luo, J., Jang, H. D. & Huang, J. Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7, 1464–1471 (2013).

    CAS  Google Scholar 

  6. Chua, C. K. et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9, 2548–2555 (2015).

    CAS  Google Scholar 

  7. Hassan, M. et al. Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6, 11988–11994 (2014).

    CAS  Google Scholar 

  8. Liu, W. W., Feng, Y. Q., Yan, X. B., Chen, J. T. & Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013).

    CAS  Google Scholar 

  9. Yeh, T. F., Teng, C. Y., Chen, S. J. & Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297–3303 (2014).

    CAS  Google Scholar 

  10. Cheng, H., Hu, C., Zhao, Y. & Qu, L. Graphene fiber: a new material platform for unique applications. NPG Asia Mater. 6, e113 (2014).

    CAS  Google Scholar 

  11. Kou, L. et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014).

    CAS  Google Scholar 

  12. Yu, D. et al. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555–562 (2014).

    CAS  Google Scholar 

  13. Ahn, Y., Jeong, Y., Lee, D. & Lee, Y. Copper nanowire–graphene core–shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 9, 3125–3133 (2015).

    CAS  Google Scholar 

  14. Zhou, M. et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 23, 2263–2269 (2013).

    CAS  Google Scholar 

  15. Bi, H. et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22, 4421–4425 (2012).

    CAS  Google Scholar 

  16. Jakus, A. E. et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636–4648 (2015). This work demonstrates the printing of 3D architectures with high graphene content, enabling the production of electrodes with high electrical conductivity. This could be applied in the design and fabrication of a wide range of functional electronic, biological and bioelectronic medical, and non-medical devices.

    CAS  Google Scholar 

  17. Yan, Z. et al. Progress in the preparation and application of three-dimensional graphene-based porous nanocomposites. Nanoscale 7, 5563–5577 (2015).

    CAS  Google Scholar 

  18. Tibbits, S. 4D printing: multi-material shape change. Archit. Design 84, 116–121 (2014).

    Google Scholar 

  19. Li, D., Mueller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    CAS  Google Scholar 

  20. Li, Z., Liu, Z., Sun, H. & Gao, C. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev. 115, 7046–7117 (2015).

    CAS  Google Scholar 

  21. Shao, Y., Wang, H., Zhang, Q. & Li, Y. Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures. NPG Asia Mater. 6, e119 (2014).

    CAS  Google Scholar 

  22. Zhou, M. et al. High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222–6228 (2015).

    CAS  Google Scholar 

  23. Hwang, J. Y. et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18, 57–70 (2015).

    CAS  Google Scholar 

  24. Wang, J. et al. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, 2874–2878 (2012).

    CAS  Google Scholar 

  25. Hu, L., Wu, H. & Cui, Y. Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502 (2010).

    Google Scholar 

  26. Choi, J. H. et al. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries. Sci. Rep. 4, 7334 (2014).

    CAS  Google Scholar 

  27. Zhang, Y. et al. A graphene-oxide-based thin coating on the separator: an efficient barrier towards high-stable lithium–sulfur batteries. 2D Mater. 2, 024013 (2015).

    Google Scholar 

  28. Kim, D. Y. et al. Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv. Funct. Mater. 24, 4986–4995 (2014).

    CAS  Google Scholar 

  29. Xin, G. et al. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26, 4521–4526 (2014).

    CAS  Google Scholar 

  30. Roberts, M. et al. 3D lithium ion batteries — from fundamentals to fabrication. J. Mater. Chem. 21, 9876–9890 (2011).

    CAS  Google Scholar 

  31. Le, L. T., Ervin, M. H., Qiu, H., Fuchs, B. E. & Lee, W. Y. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13, 355–358 (2011).

    CAS  Google Scholar 

  32. Xu, Y. et al. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 3, 1035–1040 (2013).

    CAS  Google Scholar 

  33. Secor, E. B. et al. Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26, 4533–4538 (2014).

    CAS  Google Scholar 

  34. Nathan, M. et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. J. Microelectromech. Syst. 14, 879–885 (2005).

    CAS  Google Scholar 

  35. Miller, J. R., Outlaw, R. A. & Holloway, B. C. Graphene double-layer capacitor with AC line-filtering performance. Science 329, 1637–1639 (2010). The first study on using graphene EDL capacitors for AC (120 Hz) line-filtering using vertically oriented graphene sheets grown directly on a nickel substrate.

    CAS  Google Scholar 

  36. Sheng, K., Sun, Y., Li, C., Yuan, W. & Shi, G. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for AC line-filtering. Sci. Rep. 2, 247 (2012).

    Google Scholar 

  37. Lin, J. et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2012).

    Google Scholar 

  38. Wu, Z. S., Liu, Z., Parvez, K., Feng, X. & Müllen, K. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27, 3669–3675 (2015).

    CAS  Google Scholar 

  39. Kurra, N., Hota, M. K. & Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and AC line-filtering. Nano Energy 13, 500–508 (2015).

    CAS  Google Scholar 

  40. Nathan, A. et al. Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486–1517 (2012).

    Google Scholar 

  41. Sheats, J. R. Manufacturing and commercialization issues in organic electronics. J. Mater. Res. 19, 1974–1989 (2004).

    CAS  Google Scholar 

  42. Wang, X. & Shi, G. Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci. 8, 790–823 (2015).

    CAS  Google Scholar 

  43. Shao, Y. et al. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639–3665 (2015).

    CAS  Google Scholar 

  44. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  Google Scholar 

  45. Chen, T., Xue, Y., Roy, A. K. & Dai, L. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8, 1039–1046 (2013).

    Google Scholar 

  46. Jost, K., Dion, G. & Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2, 10776–10787 (2014).

    CAS  Google Scholar 

  47. Yu, G. et al. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011).

    CAS  Google Scholar 

  48. Meng, Y. et al. All-graphene core–sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 2326–2331 (2013).

    CAS  Google Scholar 

  49. Facchetti, A. & Marks, T. J. Transparent Electronics: From Synthesis to Applications (Wiley, 2010).

    Google Scholar 

  50. Yang, Y. et al. Transparent lithium-ion batteries. Proc. Natl Acad. Sci. USA 108, 13013–13018 (2011).

    CAS  Google Scholar 

  51. Li, N., Chen, Z., Ren, W., Li, F. & Cheng, H. M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl Acad. Sci. USA 109, 17360–17365 (2012).

    CAS  Google Scholar 

  52. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    CAS  Google Scholar 

  53. Ye, M. et al. Uniquely arranged graphene-on-graphene structure as a binder-free anode for high-performance lithium-ion batteries. Small 10, 5035–5041 (2014).

    CAS  Google Scholar 

  54. Gwon, H. et al. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 4, 1277–1283 (2011).

    CAS  Google Scholar 

  55. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    CAS  Google Scholar 

  56. Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6, 496–500 (2011).

    CAS  Google Scholar 

  57. Karim, M. R. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097–8100 (2013).

    CAS  Google Scholar 

  58. Hatakeyama, K. et al. Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew. Chem. Int. Ed. Engl. 53, 6997–7000 (2014).

    CAS  Google Scholar 

  59. Zhang, Q. et al. Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors. Nano Lett. 14, 1938–1943 (2014).

    CAS  Google Scholar 

  60. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    CAS  Google Scholar 

  61. Xu, Y. et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014).

    CAS  Google Scholar 

  62. El-Kady, M. F. et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl Acad. Sci. USA 112, 4233–4238 (2015).

    CAS  Google Scholar 

  63. Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. & Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014).

    CAS  Google Scholar 

  64. Huang, J. Q. et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9, 3002–3011 (2015).

    CAS  Google Scholar 

  65. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Google Scholar 

  66. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Google Scholar 

  67. Gao, W. et al. Ozonated graphene oxide film as a proton-exchange membrane. Angew. Chem. Int. Ed. Engl. 53, 3588–3593 (2014).

    CAS  Google Scholar 

  68. Liu, F., Song, S., Xue, D. & Zhang, H. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 24, 1089–1094(2012).

    CAS  Google Scholar 

  69. Mukherjee, R., Thomas, A. V., Krishnamurthy, A. & Koratkar, N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6, 7867–7878 (2012).

    CAS  Google Scholar 

  70. Xu, Y. et al. Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 127, 5435–5440 (2015).

    Google Scholar 

  71. Wu, Z. S., Ren, W., Xu, L., Li, F. & Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463–5471 (2011).

    CAS  Google Scholar 

  72. Zhou, W. et al. A general strategy toward graphene metal oxide core–shell nanostructures for high-performance lithium storage. Energy Environ. Sci. 4, 4954–4961 (2011).

    CAS  Google Scholar 

  73. Hu, L. H., Wu, F. Y., Lin, C. T., Khlobystov, A. N. & Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 4, 1687 (2013).

    Google Scholar 

  74. Chou, S. L., Pan, Y., Wang, J. Z., Liu, H. K. & Dou, S. X. Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 16, 20347–20359 (2014).

    CAS  Google Scholar 

  75. He, S. & Chen, W. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance. Nanoscale 7, 6957–6990 (2015).

    CAS  Google Scholar 

  76. Neto, A. H. & Novoselov, K. Two-dimensional crystals: beyond graphene. Mater. Express 1, 10–17 (2011).

    Google Scholar 

  77. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    CAS  Google Scholar 

  78. Gupta, A., Sakthivel, T. & Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015).

    CAS  Google Scholar 

  79. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Google Scholar 

  80. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). The metallic 1T phase of MoS2 has the ability to intercalate various cations, which makes it promising for electrochemical energy storage in both aqueous and organic media.

    CAS  Google Scholar 

  81. da Silveira Firmiano, E. G. et al. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4, 1301380 (2014).

    Google Scholar 

  82. Chang, K. & Chen, W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5, 4720–4728 (2011).

    CAS  Google Scholar 

  83. Naguib, M. & Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 48, 128–135 (2014).

    Google Scholar 

  84. Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  Google Scholar 

  85. Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    Google Scholar 

  86. Ghaffarzadeh, K. Graphene and 2D Materials: Markets, Technologies and Opportunities 2015–2025 (IDTechEx, 2015).

    Google Scholar 

  87. Weinstein, L. & Dash, R. Supercapacitor carbons. Mater. Today 10, 356–357 (2013).

    Google Scholar 

  88. Wolf, E. L. in Applications of Graphene 19–38 (Springer, 2014).

    Google Scholar 

  89. Chen, Q. et al. Enhanced hot-carrier luminescence in multilayer reduced graphene oxide nanospheres. Sci. Rep. 3, 2315 (2013).

    Google Scholar 

  90. Raccichini, R., Varzi, A., Passerini, S. & Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015).

    CAS  Google Scholar 

  91. Wei, W. et al. The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon 57, 530–533 (2013).

    CAS  Google Scholar 

  92. Wu, Z. S. et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012).

    CAS  Google Scholar 

  93. Park, S. H. et al. Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 27, 457–465 (2015).

    CAS  Google Scholar 

  94. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  Google Scholar 

  95. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  Google Scholar 

  96. Cong, H. P., Ren, X. C., Wang, P. & Yu, S. H. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci. Rep. 2, 613 (2012).

    Google Scholar 

  97. Hu, C. et al. Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett. 12, 5879–5884 (2012).

    CAS  Google Scholar 

  98. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Google Scholar 

  99. Liu, C., Yu, Z., Neff, D., Zhamu, A. & Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010).

    CAS  Google Scholar 

  100. Zhu, Y., et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). This study describes a novel strategy for boosting the energy density of graphene supercapacitors via chemical activation of exfoliated graphite oxide. This leads to porous carbons with surface areas in excess of 3,000 m2 g−1 featured with improved specific capacitance and reduced resistance.

    CAS  Google Scholar 

  101. Bai, J., Zhong, X., Jiang, S., Huang, Y. & Duan, X. Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010).

    CAS  Google Scholar 

  102. Dong, Z. et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24, 1856–1861 (2012).

    CAS  Google Scholar 

  103. Li, X. et al. Multifunctional graphene woven fabrics. Sci. Rep. 2, 395 (2012).

    CAS  Google Scholar 

  104. Yan, Z. et al. Hexagonal graphene onion rings. J. Am. Chem. Soc. 135, 10755–10762 (2013).

    CAS  Google Scholar 

  105. Choi, B. G., Yang, M., Hong, W. H., Choi, J. W. & Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020–4028 (2012).

    CAS  Google Scholar 

  106. Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011).

    CAS  Google Scholar 

  107. Xu, Y., Sheng, K., Li, C. & Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010).

    CAS  Google Scholar 

  108. Korkut, S., Roy-Mayhew, J. D., Dabbs, D. M., Milius, D. L. & Aksay, I. A. High surface area tapes produced with functionalized graphene. ACS Nano 5, 5214–5222 (2011).

    CAS  Google Scholar 

  109. Sun, H., Xu, Z. & Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013).

    CAS  Google Scholar 

  110. Bai, H., Li, C., Wang, X. & Shi, G. On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545–5551 (2011).

    CAS  Google Scholar 

  111. Burress, J. W. et al. Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. Engl. 49, 8902–8904 (2010).

    CAS  Google Scholar 

  112. Jahan, M., Bao, Q. & Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012).

    CAS  Google Scholar 

  113. Zhao, Y. et al. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. Engl. 124, 11533–11537 (2012).

    Google Scholar 

  114. Gilje, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    CAS  Google Scholar 

  115. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2009).

    CAS  Google Scholar 

  116. Licari, J. J. Coating Materials for Electronic Applications: Polymers, Processing, Reliability, Testing (William Andrew Publishing, 2003).

    Google Scholar 

  117. Lee, J. W. et al. Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5, 9889–9894 (2012).

    CAS  Google Scholar 

  118. Zhang, X. et al. Electrospun TiO2–graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J. Phys. Chem. C 116, 14780–14788 (2012).

    CAS  Google Scholar 

  119. Liang, Y., Wu, D., Feng, X. & Müllen, K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21, 1679–1683 (2009).

    CAS  Google Scholar 

  120. D'Arcy, J. M., Tran, H. D., Stieg, A. Z., Gimzewski, J. K. & Kaner, R. B. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition. Nanoscale 4, 3075–3082 (2012).

    CAS  Google Scholar 

  121. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008).

    CAS  Google Scholar 

  122. Yu, D. & Dai, L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors thank Nanotech Energy for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Kaner.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Kady, M., Shao, Y. & Kaner, R. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing