Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thin-film ferroelectric materials and their applications

Abstract

Ferroelectric materials, because of their robust spontaneous electrical polarization, are widely used in various applications. Recent advances in modelling, synthesis and characterization techniques are spurring unprecedented advances in the study of these materials. In this Review, we focus on thin-film ferroelectric materials and, in particular, on the possibility of controlling their properties through the application of strain engineering in conventional and unconventional ways. We explore how the study of ferroelectric materials has expanded our understanding of fundamental effects, enabled the discovery of novel phases and physics, and allowed unprecedented control of materials properties. We discuss several exciting possibilities for the development of new devices, including those in electronic, thermal and photovoltaic applications, and transduction sensors and actuators. We conclude with a brief survey of the different directions that the field may expand to over the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thin-film strain effects.
Figure 2: Examples of the application of unconventional strain.
Figure 3: Thermal properties of ferroelectric materials.
Figure 4: Potential of ferroelectric materials for applications.
Figure 5: Promising developments in ferroelectrics research

Similar content being viewed by others

References

  1. Cross, L. E. & Newnham, R. E. in Ceramics and Civilization III: High Technology Ceramics: Past, Present, and Future (eds Kingery, W. D. & Lense, E. ) 289–305 (American Ceramic Society, 1987).

    Google Scholar 

  2. de Araujo, C. P., Taylor, G. W. & Scott, J. F. (eds) Ferroelectric Thin Films: Synthesis and Basic Properties (Gordon and Breach, 1996).

    Google Scholar 

  3. Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).

    CAS  Google Scholar 

  4. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    CAS  Google Scholar 

  5. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    CAS  Google Scholar 

  6. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    CAS  Google Scholar 

  7. Martin, L. W. & Schlom, D. G. Advanced synthesis techniques and routes to new single-phase multiferroics. Curr. Opin. Sol. State Mater. Sci. 16, 199–215 (2012).

    CAS  Google Scholar 

  8. Kalinin, S. V., Borisevich, A. & Fong, D. Beyond condensed matter physics on the nanoscale: the role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 6, 10423–10437 (2012).

    CAS  Google Scholar 

  9. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    CAS  Google Scholar 

  10. Gumbsch, P., Taeri-Baghbadrani, S., Brunner, D., Sigle, W. & Ruhle, M. Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys. Rev. Lett. 87, 085505 (2001).

    CAS  Google Scholar 

  11. Freund, L. B. & Suresh, S. in Thin Film Materials: Stress, Defect Formation and Surface Evolution 60–83, 283–290, 396–416 (Cambridge Univ. Press, 2003).

    Google Scholar 

  12. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    CAS  Google Scholar 

  13. Christen, H. M., Nam, J. H., Kim, H. S., Hatt, A. J. & Spaldin, N. A. Stress-induced R-M A-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B 83, 144107 (2011).

    Google Scholar 

  14. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    CAS  Google Scholar 

  15. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    CAS  Google Scholar 

  16. Sai, N., Kolpak, A. M. & Rappe, A. M. Ferroelectricity in ultrathin perovskite films. Phys. Rev. B 72, 020101 (2005).

    Google Scholar 

  17. Kolpak, A. M., Sai, N. & Rappe, A. M. Short-circuit boundary conditions in ferroelectric PbTiO3 thin films. Phys. Rev. B 74, 054112 (2006).

    Google Scholar 

  18. Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).

    CAS  Google Scholar 

  19. Spanier, J. E. et al. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735–739 (2006).

    CAS  Google Scholar 

  20. Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009).

    CAS  Google Scholar 

  21. Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal-oxide interfaces. Nat. Mater. 8, 392–397 (2009).

    CAS  Google Scholar 

  22. Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003).

    CAS  Google Scholar 

  23. Sai, N., Meyer, B. & Vanderbilt, D. Compositional inversion symmetry breaking in ferroelectric perovskites. Phys. Rev. Lett. 84, 5636–5639 (2000).

    CAS  Google Scholar 

  24. Nakhmanson, S. M., Rabe, K. M. & Vanderbilt, D. Polarization enhancement in two- and three-component ferroelectric superlattices. Appl. Phys. Lett. 87, 102906 (2005).

    Google Scholar 

  25. Nakhmanson, S. M., Rabe, K. M. & Vanderbilt, D. Predicting polarization enhancement in multicomponent ferroelectric superlattices. Phys. Rev. B 73, 060101 (2006).

    Google Scholar 

  26. Corbett, M. H., Bowman, R. M., Gregg, J. M. & Foord, D. T. Enhancement of dielectric constant and associated coupling of polarization behavior in thin film relaxor superlattices. Appl. Phys. Lett. 79, 815–817 (2001).

    CAS  Google Scholar 

  27. Shimuta, T. et al. Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with “asymmetric” structure. J. Appl. Phys. 91, 2290–2294 (2002).

    CAS  Google Scholar 

  28. Warusawithana, M. P., Colla, E. V., Eckstein, J. N. & Weissman, M. B. Artificial dielectric superlattices with broken inversion symmetry. Phys. Rev. Lett. 90, 036802 (2003).

    Google Scholar 

  29. Kim, L., Jung, D., Kim, J., Kim, Y. S. & Lee, J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl. Phys. Lett. 82, 2118–2120 (2003).

    CAS  Google Scholar 

  30. Christen, H. M., Specht, E. D., Silliman, S. S. & Harshavardhan, K. S. Ferroelectric and antiferroelectric coupling in superlattices of paraelectric perovskites at room temperature. Phys. Rev. B 68, 020101 (2003).

    Google Scholar 

  31. Tian, W. et al. Structural evidence for enhanced polarization in a commensurate short-period BaTiO3/SrTiO3 superlattice. Appl. Phys. Lett. 89, 092905 (2006).

    Google Scholar 

  32. Tenne, D. A. et al. Probing nanoscale ferroelectricity by ultraviolet raman spectroscopy. Science 313, 1614–1616 (2006).

    CAS  Google Scholar 

  33. Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005).

    CAS  Google Scholar 

  34. Dawber, M. et al. Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 95, 177601 (2005).

    CAS  Google Scholar 

  35. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    CAS  Google Scholar 

  36. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    CAS  Google Scholar 

  37. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    CAS  Google Scholar 

  38. Holcomb, M. B. et al. Probing the evolution of antiferromagnetism in multiferroics. Phys. Rev. B 81, 134406 (2010).

    Google Scholar 

  39. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    CAS  Google Scholar 

  40. Ederer, C. & Spaldin, N. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

    Google Scholar 

  41. Ravindran, P., Vidya, R., Kjekshus, A., Fjellvåg, H. & Eriksson, O. Theoretical investigation of magnetoelectric behavior in BiFeO3 . Phys. Rev. B 74, 224412 (2006).

    Google Scholar 

  42. Bea, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

    CAS  Google Scholar 

  43. Ricinschi, D., Yun, K. Y. & Okuyama, M. A mechanism for the 150 μC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J. Phys. Condens. Matter 18, L97–L105 (2006).

    CAS  Google Scholar 

  44. Damodaran, A., Lee, S., Karthik, J., MacLaren, S. & Martin, L. Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films. Phys. Rev. B 85, 024113 (2012).

    Google Scholar 

  45. Damodaran, A. R., Breckenfeld, E., Choquette, A. K. & Martin, L. W. Stabilization of mixed-phase structures in highly strained BiFeO3 thin films via chemical-alloying. Appl. Phys. Lett. 100, 082904 (2012).

    Google Scholar 

  46. Ouyang, J., Zhang, W., Huang, X. & Roytburd, A. L. Thermodynamics of formation of tetragonal and rhombohedral heterophase polydomains in epitaxial ferroelectric thin films. Acta Mater. 59, 3779–3791 (2011).

    CAS  Google Scholar 

  47. Zhang, J. X. et al. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 98–102 (2011).

    CAS  Google Scholar 

  48. Vasudevan, R. K. et al. Nanoscale control of phase variants in strain-engineered BiFeO3 . Nano Lett. 11, 3346–3354 (2011).

    CAS  Google Scholar 

  49. Damodaran, A. R. et al. Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films. Adv. Mater. 23, 3170–3175 (2011).

    CAS  Google Scholar 

  50. Martin, L. W. et al. Growth and structure of PbVO3 thin films. Appl. Phys. Lett. 90, 062903 (2007).

    Google Scholar 

  51. Kumar, A. et al. Polar and magnetic properties of PbVO3 thin films. Phys. Rev. B 75, 060101 (2007).

    Google Scholar 

  52. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).

    CAS  Google Scholar 

  53. Shin, Y.-H., Grinberg, I., Chen, I.-W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007).

    CAS  Google Scholar 

  54. Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016).

    Google Scholar 

  55. Ganpule, C. S. et al. Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91, 1477–1481 (2002).

    CAS  Google Scholar 

  56. Koukhar, V., Pertsev, N. & Waser, R. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures. Phys. Rev. B 64, 214103 (2001).

    Google Scholar 

  57. Li, Y. L., Hu, S. Y. & Chen, L. Q. Ferroelectric domain morphologies of (001) PbZr1−x Tix O3 epitaxial thin films. J. Appl. Phys. 97, 034112 (2005).

    Google Scholar 

  58. Kukhar, V., Pertsev, N., Kohlstedt, H. & Waser, R. Polarization states of polydomain epitaxial Pb(Zr1−x Tix) O3 thin films and their dielectric properties. Phys. Rev. B 73, 214103 (2006).

    Google Scholar 

  59. Karthik, J. & Martin, L. Pyroelectric properties of polydomain epitaxial Pb(Zr1−x, Tix)O3 thin films. Phys. Rev. B 84, 024102 (2011).

    Google Scholar 

  60. Karthik, J. & Martin, L. W. Effect of domain walls on the electrocaloric properties of Pb(Zr1−x, Tix) O3 thin films. Appl. Phys. Lett. 99, 032904 (2011).

    Google Scholar 

  61. Karthik, J., Damodaran, A. & Martin, L. Effect of 90° domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 108, 167601 (2012).

    CAS  Google Scholar 

  62. Karthik, J., Agar, J. C., Damodaran, A. R. & Martin, L. W. Effect of 90 degrees domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 109, 257602 (2012).

    CAS  Google Scholar 

  63. Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).

    CAS  Google Scholar 

  64. Chu, Y. H. et al. Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307–2311 (2006).

    CAS  Google Scholar 

  65. Pabst, G. W., Martin, L. W., Chu, Y. & Ramesh, R. Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007).

    Google Scholar 

  66. Folkman, C. M. et al. Stripe domain structure in epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate. Appl. Phys. Lett. 94, 251911 (2009).

    Google Scholar 

  67. Chen, Z. et al. 180° ferroelectric stripe nanodomains in BiFeO3 thin films. Nano. Lett. 15, 6506–6513 (2015).

    CAS  Google Scholar 

  68. Chu, Y. H. et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    CAS  Google Scholar 

  69. Chen, Y. B. et al. Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films. Appl. Phys. Lett. 90, 072907 (2007).

    Google Scholar 

  70. Jang, H. W. et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films. Adv. Mater. 21, 817–823 (2009).

    CAS  Google Scholar 

  71. Chu, Y. et al. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9, 1726–1730 (2009).

    CAS  Google Scholar 

  72. Park, J. W. et al. Origin of suppressed polarization in BiFeO3 films. Appl. Phys. Lett. 97, 212904 (2010).

    Google Scholar 

  73. Baek, S. et al. The nature of polarization fatigue in BiFeO3 . Adv. Mater. 23, 1621–1625 (2011).

    CAS  Google Scholar 

  74. Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).

    CAS  Google Scholar 

  75. Giencke, J. E., Folkman, C. M., Baek, S. & Eom, C. Tailoring the domain structure of epitaxial BiFeO3 thin films. Curr. Opin. Sol. State Mater. Sci. 18, 39–45 (2014).

    CAS  Google Scholar 

  76. Zhang, J., Weiss, C. V. & Alpay, S. P. Effect of thermal stresses on the dielectric properties of strontium titanate thin films. Appl. Phys. Lett. 99, 042902 (2011).

    Google Scholar 

  77. Zembilgotov, A. G., Pertsev, N. A., Böttger, U. & Waser, R. Effect of anisotropic in-plane strains on phase states and dielectric properties of epitaxial ferroelectric thin films. Appl. Phys. Lett. 86, 052903 (2005).

    Google Scholar 

  78. Biegalski, M. D. et al. Influence of anisotropic strain on the dielectric and ferroelectric properties of SrTiO3 thin films on DyScO3 substrates. Phys. Rev. B 79, 224117 (2009).

    Google Scholar 

  79. Harrington, S. A. et al. Thick lead-free ferroelectric films with high curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol 6, 491–495 (2011).

    CAS  Google Scholar 

  80. Cheng, C.-J., Borisevich, A. Y., Kan, D., Takeuchi, I. & Nagarajan, V. Nanoscale structural and chemical properties of antipolar clusters in sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588–2596 (2010).

    CAS  Google Scholar 

  81. Cheng, C.-J., Kan, D., Anbusathaiah, V., Takeuchi, I. & Nagarajan, V. Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).

    Google Scholar 

  82. Kan, D., Anbusathaiah, V. & Takeuchi, I. Chemical substitution-induced ferroelectric polarization rotation in BiFeO3 . Adv. Mater. 23, 1765–1769 (2011).

    CAS  Google Scholar 

  83. Borisevich, A. Y. et al. Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775 (2012).

    CAS  Google Scholar 

  84. Kan, D., Cheng, C., Nagarajan, V. & Takeuchi, I. in Functional Metal Oxides (eds Ogale, S. B., Venkatesan, T. V. & Blamire, M. G. ) 195–219 (Wiley-VCH, 2013).

    Google Scholar 

  85. Breckenfeld, E. et al. Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films. Chem. Mater. 24, 331–337 (2012).

    CAS  Google Scholar 

  86. Breckenfeld, E., Wilson, R. B. & Martin, L. W. Effect of growth induced (non)stoichiometry on the thermal conductivity, permittivity, and dielectric loss of LaAlO3 films. Appl. Phys. Lett. 103, 082901 (2013).

    Google Scholar 

  87. Breckenfeld, E. et al. Effect of growth induced (non)stoichiometry on interfacial conductance in LaAlO3/SrTiO3 . Phys. Rev. Lett. 110, 196804 (2013).

    CAS  Google Scholar 

  88. Breckenfeld, E., Shah, A. B. & Martin, L. W. Strain evolution in non-stoichiometric heteroepitaxial thin-film perovskites. J. Mater. Chem. C 1, 8052–8059 (2013).

    CAS  Google Scholar 

  89. Lee, C-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    CAS  Google Scholar 

  90. Breckenfeld, E., Bronn, N., Mason, N. & Martin, L. W. Tunability of conduction at the LaAlO3/SrTiO3 heterointerface: thickness and compositional studies. Appl. Phys. Lett. 105, 121610 (2014).

    Google Scholar 

  91. Breckenfeld, E., Chen, Z., Damodaran, A. R. & Martin, L. W. Effects of nonequilibrium growth, nonstoichiometry, and film orientation on the metal-to-insulator transition in NdNiO3 thin films. ACS Appl. Mater. Interfaces 6, 22436–22444 (2014).

    CAS  Google Scholar 

  92. Damodaran, A. R., Breckenfeld, E., Chen, Z., Lee, S. & Martin, L. W. Enhancement of ferroelectric curie temperature in BaTiO3 films via strain-induced defect dipole alignment. Adv. Mater. 26, 6341–6347 (2014).

    CAS  Google Scholar 

  93. Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014).

    Google Scholar 

  94. Xu, R. et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79–86 (2015).

    CAS  Google Scholar 

  95. Xu, R., Zhang, J., Chen, Z. & Martin, L. W. Orientation-dependent structural phase diagrams and dielectric properties of PbZr1−x Tix O3 polydomain thin films. Phys. Rev. B 91, 144106 (2015).

    Google Scholar 

  96. Daniels, J. E. et al. Neutron diffraction study of the polarization reversal mechanism in [111]c-oriented Pb(Zn1\3Nb2\3)O3–x PbTiO3 . J. Appl. Phys. 101, 104108 (2007).

    Google Scholar 

  97. Daniels, J. E. et al. Two-step polarization reversal in biased ferroelectrics. J. Appl. Phys. 115, 224104 (2014).

    Google Scholar 

  98. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Google Scholar 

  99. Rondinelli, J. M. & Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 24, 1961–1968 (2012).

    CAS  Google Scholar 

  100. Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 ruddlesden-popper compounds. Adv. Funct. Mater. 23, 4810–4820 (2013).

    CAS  Google Scholar 

  101. Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Nat. Acad. Sci. USA 109, 9710–9715 (2012).

    CAS  Google Scholar 

  102. Spurgeon, S. R. et al. Thickness-dependent crossover from charge- to strain-mediated magnetoelectric coupling in ferromagnetic/piezoelectric oxide heterostructures. ACS Nano 8, 894–903 (2014).

    CAS  Google Scholar 

  103. Spurgeon, S. R. et al. Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nat. Commun. 6, 6735 (2015).

    CAS  Google Scholar 

  104. Borisevich, A. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).

    CAS  Google Scholar 

  105. Kim, Y. et al. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv. Mater. 25, 2497–2504 (2013).

    CAS  Google Scholar 

  106. Chen, Z. H., Damodaran, A. R., Xu, R., Lee, S. & Martin, L. W. Effect of “symmetry mismatch” on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014).

    Google Scholar 

  107. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    CAS  Google Scholar 

  108. Yudin, P. V. & Tagantsev, A. K. Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013).

    CAS  Google Scholar 

  109. Resta, R. Towards a bulk theory of flexoelectricity. Phys. Rev. Lett. 105, 127601 (2010).

    Google Scholar 

  110. Hong, J. & Vanderbilt, D. First-principles theory of frozen-ion flexoelectricity. Phys. Rev. B 84, 180101 (2011).

    Google Scholar 

  111. Stengel, M. Flexoelectricity from density-functional perturbation theory. Phys. Rev. B 88, 174106 (2013).

    Google Scholar 

  112. Biancoli, A., Fancher, C. M., Jones, J. L. & Damjanovic, D. Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14, 224–229 (2015).

    CAS  Google Scholar 

  113. Catalan, G., Sinnamon, L. J. & Gregg, J. M. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter 16, 2253 (2004).

    CAS  Google Scholar 

  114. Catalan, G., Noheda, B., McAneney, J., Sinnamon, L. J. & Gregg, J. M. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B. 72, 020102 (2005).

    Google Scholar 

  115. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    CAS  Google Scholar 

  116. Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    CAS  Google Scholar 

  117. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    CAS  Google Scholar 

  118. Lee, D. et al. Flexoelectric control of defect formation in ferroelectric epitaxial thin films. Adv. Mater. 26, 5005–5011 (2014).

    CAS  Google Scholar 

  119. Mangalam, R. V. K., Karthik, J., Damodaran, A. R., Agar, J. C. & Martin, L. W. Unexpected crystal and domain structures and properties in compositionally graded PbZr1−x Tix O3 thin films. Adv. Mater. 25, 1761–1767 (2013).

    CAS  Google Scholar 

  120. Mangalam, R. V. K., Agar, J. C., Damodaran, A. R., Karthik, J. & Martin, L. W. Improved pyroelectric figures of merit in compositionally graded PbZr1–x Tix O3 thin films. ACS Appl. Mater. Interfaces 5, 13235–13241 (2013).

    CAS  Google Scholar 

  121. Agar, J. C. et al. Complex evolution of built-in potential in compositionally-graded PbZr1−x Tix O3 thin films. ACS Nano 9, 7332–7342 (2015).

    CAS  Google Scholar 

  122. Karthik, J., Mangalam, R. V. K., Agar, J. C. & Martin, L. W. Large built-in electric fields due to flexoelectricity in compositionally graded ferroelectric thin films. Phys. Rev. B 87, 024111 (2013).

    Google Scholar 

  123. Bhaskar, U. K. et al. A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263–266 (2016).

    CAS  Google Scholar 

  124. Scott, J. F. Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).

    CAS  Google Scholar 

  125. Valant, M. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012).

    CAS  Google Scholar 

  126. Alpay, S. P., Mantese, J., Trolier-McKinstry, S., Zhang, Q. & Whatmore, R. W. Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull. 39, 1099–1111 (2014).

    CAS  Google Scholar 

  127. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    CAS  Google Scholar 

  128. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 . Science 311, 1270–1271 (2006).

    CAS  Google Scholar 

  129. Mischenko, A. S., Zhang, Q., Whatmore, R. W., Scott, J. F. & Mathur, N. D. Giant electrocaloric effect in the thin film relaxor ferroelectric 0. 9 PbMg1/3Nb2/3O3–0.1PbTiO3 near room temperature. Appl. Phys. Lett. 89, 242912 (2006).

    Google Scholar 

  130. Correia, T. M. et al. Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3–PbTiO3 relaxor thin film. Appl. Phys. Lett. 95, 182904 (2009).

    Google Scholar 

  131. Chen, H., Ren, T., Wu, X., Yang, Y. & Liu, L. Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite. Appl. Phys. Lett. 94, 182902 (2009).

    Google Scholar 

  132. Akcay, G., Alpay, S. P., Mantese, J. V. & Rossetti, G. A. Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields. Appl. Phys. Lett. 90, 252909 (2007).

    Google Scholar 

  133. Marathe, M. & Ederer, C. Electrocaloric effect in BaTiO3: a first-principles-based study on the effect of misfit strain. Appl. Phys. Lett. 104, 212902 (2014).

    Google Scholar 

  134. Liu, Y., Infante, I. C., Lou, X., Lupascu, D. C. & Dkhil, B. Giant mechanically-mediated electrocaloric effect in ultrathin ferroelectric capacitors at room temperature. Appl. Phys. Lett. 104, 012907 (2014).

    Google Scholar 

  135. Zhang, J., Cole, M. W. & Alpay, S. P. Pyroelectric properties of barium strontium titanate films: effect of thermal stresses. J. Appl. Phys. 108, 054103 (2010).

    Google Scholar 

  136. Zhang, J., Alpay, S. P. & Rossetti, G. A. Influence of thermal stresses on the electrocaloric properties of ferroelectric films. Appl. Phys. Lett. 98, 132907 (2011).

    Google Scholar 

  137. Zhang, J., Xu, R., Damodaran, A. R., Chen, Z.-H. & Martin, L. W. Understanding order in compositionally graded ferroelectrics: flexoelectricity, gradient, and depolarization field effects. Phys. Rev. B 89, 224101 (2014).

    Google Scholar 

  138. Kesim, M. T., Zhang, J., Alpay, S. P. & Martin, L. W. Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Appl. Phys. Lett. 105, 052901 (2014).

    Google Scholar 

  139. Espinal, Y. et al. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers. Appl. Phys. Lett. 105, 232905 (2014).

    Google Scholar 

  140. Peng, B., Fan, H. & Zhang, Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater. 23, 2987–2992 (2013).

    CAS  Google Scholar 

  141. Pirc, R., Rožicˇ, B., Koruza, J., Malicˇ, B. & Kutnjak, Z. Negative electrocaloric effect in antiferroelectric PbZrO3 . Europhys. Lett. 107, 17002 (2014).

    Google Scholar 

  142. Geng, W. et al. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Adv. Mater. 27, 3165–3169 (2015).

    CAS  Google Scholar 

  143. Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3 . Adv. Mater. 25, 1360–1365 (2013).

    CAS  Google Scholar 

  144. Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52–58 (2013).

    CAS  Google Scholar 

  145. Fletcher, P. C., Mangalam, V. K. R., Martin, L. W. & King, W. P. Field emission from nanometer-scale tips of crystalline PbZrx Ti1−x O3 . J. Vac. Sci. Technol. B 31, 021805 (2013).

    Google Scholar 

  146. Fletcher, P. C., Mangalam, V. K. R., Martin, L. W. & King, W. P. Pyroelectric electron emission from nanometer-thick films of PbZrx Ti1−x O3 . Appl. Phys. Lett. 102, 192908 (2013).

    Google Scholar 

  147. Bhatia, B., Damodaran, A. R., Cho, H., Martin, L. W. & King, W. P. High-frequency thermal-electrical cycles for pyroelectric energy conversion. J. Appl. Phys. 116, 194509 (2014).

    Google Scholar 

  148. Lu, S. G. et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97, 202901 (2010).

    Google Scholar 

  149. Tong, T., Karthik, J., Mangalam, R. V. K., Martin, L. W. & Cahill, D. G. Reduction of the electrocaloric entropy change of ferroelectric PbZr1−x Tix O3 epitaxial layers due to an elastocaloric effect. Phys. Rev. B 90, 094116 (2014).

    Google Scholar 

  150. Goupil, F. L., Berenov, A., Axelsson, A., Valant, M. & Alford, N. M. Direct and indirect electrocaloric measurements on (001)-70PbMg1/3Nb2/3O3–30PbTiO3 single crystals. J. Appl. Phys. 111, 124109 (2012).

    Google Scholar 

  151. Bhatia, B. et al. Pyroelectric current measurements on PbZr0.2Ti0.8O3 epitaxial layers. J. Appl. Phys. 112, 104106 (2012).

    Google Scholar 

  152. Botea, M., Iuga, A. & Pintilie, L. Giant pyroelectric coefficient determined from the frequency dependence of the pyroelectric signal generated by epitaxial Pb(Zr0.2Ti0.8)O3 layers grown on single crystal SrTiO3 substrates. Appl. Phys. Lett. 103, 232902 (2013).

    Google Scholar 

  153. Tong, T., Karthik, J., Martin, L. W. & Cahill, D. G. Secondary effects in wide frequency range measurements of the pyroelectric coefficient of Ba0.6Sr0.4TiO3 and PbZr0.2Ti0.8O3 epitaxial layers. Phys. Rev. B 90, 155423 (2014).

    Google Scholar 

  154. Kolodiazhnyi, T. et al. Thermoelectric power, hall effect, and mobility of n-type BaTiO3 . Phys. Rev. B 68, 085205 (2003).

    Google Scholar 

  155. Kolodiazhnyi, T. Insulator-metal transition and anomalous sign reversal of the dominant charge carriers in perovskite BaTiO3−δ . Phys. Rev. B 78, 045107 (2008).

    Google Scholar 

  156. Lee, S., Yang, G., Wilke, R. H. T., Trolier-McKinstry, S. & Randall, C. A. Thermopower in highly reduced n -type ferroelectric and related perovskite oxides and the role of heterogeneous nonstoichiometry. Phys. Rev. B 79, 134110 (2009).

    Google Scholar 

  157. Lee, S., Wilke, R. H. T., Trolier-McKinstry, S., Zhang, S. & Randall, C. A. Srxba1−xnb2 O6−δ ferroelectric-thermoelectrics: crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 96, 031910 (2010).

    Google Scholar 

  158. Lee, S., Dursun, S., Duran, C. & Randall, C. A. Thermoelectric power factor enhancement of textured ferroelectric SrxBa1−xBb2O6−δ ceramics. J. Mater. Res. 26, 26–30 (2011).

    CAS  Google Scholar 

  159. Lee, S., Bock, J. A., Trolier-McKinstry, S. & Randall, C. A. Ferroelectric-thermoelectricity and mott transition of ferroelectric oxides with high electronic conductivity. J. Eur. Ceram. Soc. 32, 3971–3988 (2012).

    CAS  Google Scholar 

  160. Bock, J. A., Trolier-McKinstry, S., Mahan, G. D. & Randall, C. A. Polarization-based perturbations to thermopower and electronic conductivity in highly conductive tungsten bronze structured (Sr, Ba)Nb2O6: relaxors versus normal ferroelectrics. Phys. Rev. B 90, 115106 (2014).

    Google Scholar 

  161. Hopkins, P. E. et al. Effects of coherent ferroelastic domain walls on the thermal conductivity and kapitza conductance in bismuth ferrite. Appl. Phys. Lett. 102, 121903 (2013).

    Google Scholar 

  162. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    CAS  Google Scholar 

  163. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Google Scholar 

  164. Vasudevan, R. K. et al. Domain wall conduction and polarization-mediated transport in ferroelectrics. Adv. Funct. Mater. 23, 2592–2616 (2013).

    CAS  Google Scholar 

  165. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Google Scholar 

  166. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Google Scholar 

  167. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Maksymovych, P. & Kalinin, S. V. Domain wall conduction in multiaxial ferroelectrics. Phys. Rev. B 85, 045312 (2012).

    Google Scholar 

  168. Morozovska, A. N., Vasudevan, R. K., Maksymovych, P., Kalinin, S. V. & Eliseev, E. A. Anisotropic conductivity of uncharged domain walls in BiFeO3 . Phys. Rev. B 86, 085315 (2012).

    Google Scholar 

  169. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    CAS  Google Scholar 

  170. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    CAS  Google Scholar 

  171. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3 . Nat. Commun. 4, 1808 (2013).

    Google Scholar 

  172. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Google Scholar 

  173. Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Google Scholar 

  174. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Google Scholar 

  175. Gaponenko, I., ckmantel, P., Karthik, J., Martin, L. W. & Paruch, P. Towards reversible control of domain wall conduction in Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 106, 162902 (2015).

    Google Scholar 

  176. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3 . Phys. Rev. Lett. 105, 197603 (2010).

    CAS  Google Scholar 

  177. Vasudevan, R. K. et al. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12, 5524–5531 (2012).

    CAS  Google Scholar 

  178. He, Q. et al. Magnetotransport at domain walls in BiFeO3 . Phys. Rev. Lett. 108, 067203 (2012).

    CAS  Google Scholar 

  179. Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 . Nat. Phys. 8, 81–88 (2012).

    CAS  Google Scholar 

  180. Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3 . Nano Lett. 11, 1906–1912 (2011).

    CAS  Google Scholar 

  181. McQuaid, R. G. P., Chang, L. W. & Gregg, J. M. The effect of antinotches on domain wall mobility in single crystal ferroelectric nanowires. Nano Lett. 10, 3566–3571 (2010).

    CAS  Google Scholar 

  182. Whyte, J. R. et al. Ferroelectric domain wall injection. Adv. Mater. 26, 293–298 (2014).

    CAS  Google Scholar 

  183. Whyte, J. R. et al. Sequential injection of domain walls into ferroelectrics at different bias voltages: paving the way for “domain wall memristors”. J. Appl. Phys. 116, 066813 (2014).

    Google Scholar 

  184. Whyte, J. R. & Gregg, J. M. A diode for ferroelectric domain-wall motion. Nat. Commun. 6, 7361 (2015).

    CAS  Google Scholar 

  185. McGilly, L. J., Yudin, P., Feig, l. L., Tagantsev, A. K. & Setter, N. Controlling domain wall motion in ferroelectric thin films. Nat. Nanotechnol. 10, 145–150 (2015).

    CAS  Google Scholar 

  186. Agar, J. C. et al. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat. Mater. 15, 549–556 (2016).

    CAS  Google Scholar 

  187. Newns, D. M., Elmegreen, B. G., Liu, X.H. & Martyna, G. J. The piezoelectronic transistor: a nanoactuator-based post-CMOS digital switch with high speed and low power. MRS Bull. 37, 1071–1076 (2012).

    CAS  Google Scholar 

  188. Tsymbal, E. Y., Gruverman, A., Garcia, V., Bibes, M. & Barthélémy, A. Ferroelectric and multiferroic tunnel junctions. MRS Bull. 37, 138–143 (2012).

    CAS  Google Scholar 

  189. Tsymbal, E. Y. & Gruverman, A. Ferroelectric tunnel junctions: beyond the barrier. Nat. Mater. 12, 602–604 (2013).

    CAS  Google Scholar 

  190. Maksymovych, P. et al. Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009).

    CAS  Google Scholar 

  191. Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2012).

    CAS  Google Scholar 

  192. Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).

    CAS  Google Scholar 

  193. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    CAS  Google Scholar 

  194. Qi, Y. & Rappe, A. M. Designing ferroelectric field-effect transistors based on the polarization-rotation effect for low operating voltage and fast switching. Phys. Rev. Appl. 4, 044014 (2015).

    Google Scholar 

  195. Khan, A. I., et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    Google Scholar 

  196. Appleby, D. J. R. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).

    CAS  Google Scholar 

  197. Gao, W. et al. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).

    CAS  Google Scholar 

  198. Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015).

    CAS  Google Scholar 

  199. Hong, X., Posadas, A., Zou, K., Ahn, C. H. & Zhu, J. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Phys. Rev. Lett. 102, 136808 (2009).

    CAS  Google Scholar 

  200. Zheng, Y. et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).

    Google Scholar 

  201. Zheng, Y. et al. Graphene field-effect transistors with ferroelectric gating. Phys. Rev. Lett. 105, 166602 (2010).

    Google Scholar 

  202. Lu, H. et al. Ferroelectric tunnel junctions with graphene electrodes. Nat. Commun. 5, 5518 (2014).

    CAS  Google Scholar 

  203. Song, E. B. et al. Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99, 042109 (2011).

    Google Scholar 

  204. Baeumer, C., Rogers, S. P., Xu, R. J., Martin, L. W. & Shim, M. Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching. Nano Lett. 13, 1693–1698 (2013).

    CAS  Google Scholar 

  205. Hong, X. et al. Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3 . Appl. Phys. Lett. 97, 033114 (2010).

    Google Scholar 

  206. Hinnefeld, J. H. et al. Single gate p–n junctions in graphene-ferroelectric devices. Appl. Phys. Lett. 108, 203109 (2015).

    Google Scholar 

  207. Yusuf, M. H., Nielsen, B., Dawber, M. & Du, X. Extrinsic and intrinsic charge trapping at the graphene/ferroelectric interface. Nano Lett. 14, 5437–5444 (2014).

    CAS  Google Scholar 

  208. Baeumer, C. et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat. Commun. 6, 6136 (2015).

    CAS  Google Scholar 

  209. Yuan, Y., Xiao, Z., Yang, B. & Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014).

    CAS  Google Scholar 

  210. Seidel, J. & Eng, L. M. Shedding light on nanoscale ferroelectrics. Curr. Appl. Phys. 14, 1083–1091 (2014).

    Google Scholar 

  211. Butler, K. T., Frost, J. M. & Walsh, A. Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015).

    CAS  Google Scholar 

  212. Belinicher, V. I. & Sturman, B. I. The photogalvanic effect in media lacking a center of symmetry. Sov. Phys. Usp. 23, 199–223 (1980).

    Google Scholar 

  213. Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    Google Scholar 

  214. Young, S. M., Zheng, F. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).

    Google Scholar 

  215. Zenkevich, A. et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys. Rev. B 90, 161409 (2014).

    Google Scholar 

  216. Fridkin, V. M. & Popov, B. N. Anomalous photovoltaic effect in ferroelectrics. Sov. Phys. Usp. 21, 981–991 (1978).

    Google Scholar 

  217. Basu, S. R. et al. Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 92, 091905 (2008).

    Google Scholar 

  218. Zhang, J. et al. Surface, bulk, and interface electronic states of epitaxial BiFeO3 films. J. Vac. Sci. Technol. B 27, 2012–2014 (2009).

    CAS  Google Scholar 

  219. Yang, S. Y. et al. Photovoltaic effects in BiFeO3 . Appl. Phys. Lett. 95, 062909 (2009).

    Google Scholar 

  220. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S. W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

    CAS  Google Scholar 

  221. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).

    CAS  Google Scholar 

  222. Seidel, J. et al. Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).

    Google Scholar 

  223. Yan, F., Chen, G., Lu, L. & Spanier, J. E. Dynamics of photogenerated surface charge on BiFeO3 films. ACS Nano 6, 2353–2360 (2012).

    CAS  Google Scholar 

  224. Bhatnagar, A., Chaudhuri, A. R., Kim, Y. H., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3 . Nat. Commun. 4, 2835 (2013).

    Google Scholar 

  225. Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    CAS  Google Scholar 

  226. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    CAS  Google Scholar 

  227. Ceder, G. & Persson, K. The stuff of dreams. Sci. Am. 309, 36–40 (2013).

    Google Scholar 

  228. Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    CAS  Google Scholar 

  229. Yuan, Y. et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011).

    CAS  Google Scholar 

  230. Choi, Y. et al. Enhancement of local piezoresponse in polymer ferroelectrics via nanoscale control of microstructure. ACS Nano 9, 1809–1819 (2015).

    CAS  Google Scholar 

  231. Fu, D. et al. Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339, 425–428 (2013).

    CAS  Google Scholar 

  232. Bennett, J. W., Garrity, K. F., Rabe, K. M. & Vanderbilt, D. Hexagonal ABC semiconductors as ferroelectrics. Phys. Rev. Lett. 109, 167602 (2012).

    Google Scholar 

  233. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    CAS  Google Scholar 

  234. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    CAS  Google Scholar 

  235. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotechnol. 10, 151–155 (2015).

    CAS  Google Scholar 

  236. Belianinov, A. et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett. 15, 3808–3814 (2015).

    CAS  Google Scholar 

  237. Muller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2 . Nano Lett. 12, 4318–4323 (2012).

    Google Scholar 

  238. Tinte, S., Burton, B. P., Cockayne, E. & Waghmare, U. V. Origin of the relaxor state in Pb(Bx B′1−x)O3 perovskites. Phys. Rev. Lett. 97, 137601 (2006).

    Google Scholar 

  239. Grinberg, I., Juhas, P., Davies, P. K. & Rappe, A. M. Relationship between local structure and relaxor behavior in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).

    Google Scholar 

  240. Grinberg, I., Shin, Y. & Rappe, A. M. Molecular dynamics study of dielectric response in a relaxor ferroelectric. Phys. Rev. Lett. 103, 197601 (2009).

    Google Scholar 

  241. Takenaka, H., Grinberg, I., Shin, Y.-H. & Rappe, A. M. Computational studies of lead-based relaxor ferroelectrics. Ferroelectrics 469, 1–13 (2014).

    CAS  Google Scholar 

  242. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

    CAS  Google Scholar 

  243. Gao, P. et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2, 591 (2011).

    Google Scholar 

  244. Winkler, C. R. et al. Accessing intermediate ferroelectric switching regimes with time-resolved transmission electron microscopy. J. Appl. Phys. 112, 052013 (2012).

    Google Scholar 

  245. Winkler, C. R. et al. Real-time observation of local strain effects on nonvolatile ferroelectric memory storage mechanisms. Nano Lett. 14, 3617–3622 (2014).

    CAS  Google Scholar 

  246. Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D 44, 464006 (2011).

    Google Scholar 

  247. Evans, P. G. & Sichel-Tissot, R. J. In situ X-ray characterization of piezoelectric ceramic thin films. Am. Ceram. Soc. Bull. 92, 18–23 (2013).

    CAS  Google Scholar 

  248. Do, D. H. et al. Structural visualization of polarization fatigue in epitaxial ferroelectric oxide devices. Nat. Mater. 3, 365–369 (2004).

    CAS  Google Scholar 

  249. Highland, M. J. et al. Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3 . Phys. Rev. Lett. 105, 167601 (2010).

    Google Scholar 

  250. Fong, D. D. et al. Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys. Rev. Lett. 96, 127601 (2006).

    CAS  Google Scholar 

  251. Hruszkewycz, S. O. et al. Imaging local polarization in ferroelectric thin films by coherent X-ray bragg projection ptychography. Phys. Rev. Lett. 110, 177601 (2013).

    CAS  Google Scholar 

  252. Highland, M. J. et al. Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. Phys. Rev. Lett. 107, 187602 (2011).

    CAS  Google Scholar 

  253. Grigoriev, A. et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006).

    Google Scholar 

  254. Jo, J. Y. et al. Nanosecond dynamics of ferroelectric/dielectric superlattices. Phys. Rev. Lett. 107, 055501 (2011).

    Google Scholar 

  255. Daranciang, D. et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108, 087601 (2012).

    Google Scholar 

  256. Wen, H. et al. Electronic origin of ultrafast photoinduced strain in BiFeO3 . Phys. Rev. Lett. 110, 037601 (2013).

    Google Scholar 

  257. Li, D. et al. Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat. Mater. 7, 473–477 (2008).

    CAS  Google Scholar 

  258. Kim, S., Schoenberg, M. R. & Rappe, A. M. Polarization dependence of palladium deposition on ferroelectric lithium niobate (0001) surfaces. Phys. Rev. Lett. 107, 076102 (2011).

    Google Scholar 

  259. Kolpak, A. M., Grinberg, I. & Rappe, A. M. Polarization effects on the surface chemistry of PbTiO3-supported Pt films. Phys. Rev. Lett. 98, 166101 (2007).

    Google Scholar 

  260. Saidi, W. A., Martirez, J. M. P. & Rappe, A. M. Strong reciprocal interaction between polarization and surface stoichiometry in oxide ferroelectrics. Nano Lett. 14, 6711–6717 (2014).

    CAS  Google Scholar 

  261. Garrity, K., Kolpak, A. M., Ismail-Beigi, S. & Altman, E. I. Chemistry of ferroelectric surfaces. Adv. Mater. 22, 2969–2973 (2010).

    CAS  Google Scholar 

  262. Giocondi, J. L. & Rohrer, G. S. Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3 . J. Phys. Chem. B 105, 8275–8277 (2001).

    CAS  Google Scholar 

  263. Gregg, J. M. Exotic domain states in ferroelectrics: searching for vortices and skyrmions. Ferroelectrics 433, 74–87 (2012).

    CAS  Google Scholar 

  264. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    CAS  Google Scholar 

  265. Prosandeev, S. & Bellaiche, L. Characteristics and signatures of dipole vortices in ferroelectric nanodots: first-principles-based simulations and analytical expressions. Phys. Rev. B 75, 094102 (2007).

    Google Scholar 

  266. Choudhury, N., Walizer, L., Lisenkov, S. & Bellaiche, L. Geometric frustration in compositionally modulated ferroelectrics. Nature 470, 513–517 (2011).

    CAS  Google Scholar 

  267. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2015).

    Google Scholar 

  268. Liu, S., Kim, Y., Tan, L. Z. & Rappe, A. M. Strain-induced ferroelectric topological insulator. Nano Lett. 16, 1663–1668 (2016).

    CAS  Google Scholar 

  269. Tan, L. Z. & Rappe, A. M. Enhancement of the bulk photovoltaic effect in topological insulators. Phys. Rev. Lett. 116, 237402 (2016).

    Google Scholar 

  270. Roy, A., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Half-Heusler semiconductors as piezoelectrics. Phys. Rev. Lett. 109, 037602 (2012).

    Google Scholar 

Download references

Acknowledgements

L.W.M. acknowledges support from the Army Research Office under grant W911NF-14-1-0104, the US Department of Energy (DOE) under grant DE-SC0012375, the Gordon and Betty Moore Foundation's EPiQS Initiative, under grant GBMF5307, the National Science Foundation under grants DMR-1124696, DMR-1149062 and ENG-1434147, and the Office of Naval Research under grant N00014-10-1-0525. A.M.R. acknowledges support from the DOE under grants DE-FG02-07ER46431 and DE-FG02-07ER15920, the National Science Foundation under grants DMR-1120901, CBET-1159736, NSF DMR-1124696 and CMMI-1334241, and the Office of Naval Research under grants N00014-11-1-0664, N00014-12-1-1033 and N00014-14-1-0761. A.M.R. and his group thank the High-Performance Computing Modernization Office of the Department of Defense and the National Energy Research Scientific Computing program. Both authors have benefited from collaborations within programs at the University of California, Berkeley, the University of Illinois, Urbana-Champaign, and the University of Pennsylvania, as well as other valued collaborators around the world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lane W. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, L., Rappe, A. Thin-film ferroelectric materials and their applications. Nat Rev Mater 2, 16087 (2017). https://doi.org/10.1038/natrevmats.2016.87

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing