Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photonic crystal fibres

Abstract

Photonic crystal fibres have wavelength-scale morphological microstructure running down their length. This structure enables light to be controlled within the fibre in ways not previously possible or even imaginable. Our understanding of what an optical fibre is and what it does is changing because of the development of this new technology, and a broad range of applications based on these principles is being developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Propagation of light in an optical fibre.
Figure 2: Conventional fibre and PCFs.
Figure 3: Different designs of PCF waveguide.
Figure 4: PCFs from the University of Bath.
Figure 5: Predicted loss from the fundamental 'mode' in a silica capillary and reported losses from photonic bandgap fibres with hollow cores in the years 2000, 2001 and 2002.
Figure 6: Measured properties of a hollow-core bandgap fibre around 850 nm wavelength.

Similar content being viewed by others

References

  1. Birks, T. A., Knight, J. C. and Russell, P. St J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Birks, T. A., Roberts, P. J., Russell, P. St.J., Atkin, D. M. & Shepherd, T. J. Full 2-D photonic bandgaps in silica/air structures. Elect. Lett. 31, 1941–1942 (1995)

    Article  CAS  Google Scholar 

  3. Yeh, P., Yariv, A. & Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978).

    Article  ADS  Google Scholar 

  4. Knight, J. C., Birks, T. A., Russell, P. St J. & Atkin, D. M. All-silica single-mode optical fiber with photonic crystal cladding Opt. Lett. 21, 1547–1549 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Kaiser, P. & Astle, H. W. Low loss single material fibers made from pure fused silica. Bell Syst. Tech. J. 53, 1021–1039 (1974).

    Article  Google Scholar 

  6. Allan, D. C. et al. Photonic crystal fibers: effective index and band gap guidance. In Photonic Crystals and Light Localization in the 21st Century (ed. C. M. Soukoulis) 305–320 (Kluwer, Netherlands, 2001).

    Chapter  Google Scholar 

  7. Monro, T. M. et al. High nonlinearity extruded single-mode holey optical fibers. FA1, 1–3 OFC 2002 (2002).

  8. Kumar, V. V. R. K. et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10, 1520–1525 (2002).

    Article  ADS  CAS  Google Scholar 

  9. Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. & Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002).

    Article  ADS  CAS  Google Scholar 

  10. Liu, X. et al. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Opt. Lett. 26, 358–360 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Eggleton, B. J., Kerbage, C., Westbrook, P. S., Windeler, R. S. & Hale, A. Microstructured optical fiber devices. Opt. Express 9, 698–713 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Jasapara, J., Bise, R. & Windeler, R. Chromatic dispersion measurements in a photonic bandgap fibre. OFC 2002 519–521 (2002).

  13. van Eijkelenborg, M. A. et al. Microstructured polymer optical fiber. Opt. Express 9, 319–317 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Tajima, K., Zhou, J., Nakajima, K. & Sato, K. Ultra low loss and long length photonic crystal fiber. OFC 2003 (2003).

  15. Venkataram, N. et al. Low loss (13 dB/km) air core photonic band-gap fiber. PD1.1 Proc. 28th Eur. Conf. Opt. Commun. (2002).

  16. Russell, P. St J. Photonic crystal fibers. Science 299, 385–362 (2003).

    Article  Google Scholar 

  17. Knight, J. C. et al. Anomalous dispersion in photonic crystal fiber. IEEE Photon. Technol. Lett. 12, 807–809 (2000).

    Article  ADS  Google Scholar 

  18. Ferrando, A., Silvestre, E., Miret, J. J. & Andres, P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt. Lett. 25, 790–792 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Reeves, W. H., Knight, J. C., Russell, P. St. J. & Roberts, P. J. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10, 609–613 (2002).

    Article  ADS  Google Scholar 

  20. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  CAS  Google Scholar 

  22. Povazay, B. et al. Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800–1802 (2002).

    Article  ADS  CAS  Google Scholar 

  23. Ortigosa-Blanch, A. et al. Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Knight, J. C., Birks, T. A., Cregan, R. F. & Russell, P. St J. Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998).

    Article  Google Scholar 

  25. MacPherson, W. N. et al. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Opt. Commun. 193, 97–104 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Myaing, M. T. et al. Enhanced two-photon biosensing with dual-core photonic crystal fibers. Opt. Lett. 28, 1224–1226 (2003).

    Article  ADS  CAS  Google Scholar 

  27. Limpert, J. et al. High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express 11, 818–823 (2003).

    Article  ADS  CAS  Google Scholar 

  28. Marcatili, E. A. J. & Schmetzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783 (1964).

    Article  Google Scholar 

  29. Miyagi, M. & Kawakami, S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. 2, 116–126 (1984).

    Article  ADS  Google Scholar 

  30. Katagiri, T., Matsuura, Y. & Miyagi, M. Metal-covered photonic bandgap multilayer for infrared hollow waveguides. Appl. Opt. 41, 7603–7606 (2002).

    Article  ADS  CAS  Google Scholar 

  31. Knight, J. C., Broeng, J., Birks, T. A. & Russell, P. St J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998).

    Article  CAS  Google Scholar 

  32. Cregan, R. F. et al. Single-mode photonic bandgap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  CAS  Google Scholar 

  33. Bouwmans, G. et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Opt. Express 11, 1613–1620 (2003).

    Article  ADS  CAS  Google Scholar 

  34. Müller, D. et al. Measurement of photonic band-gap fiber transmission from 1.0 to 3.0 μm and impact of surface mode coupling. QTuL2 Proc. CLEO 2003 (2003).

  35. Johnsonn, S. G. et al. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Opt. Express 9, 748–779 (2001).

    Article  ADS  Google Scholar 

  36. Ouzounov, D. G. et al. Generation of high-power, non-frequency shifted solitons in a gas-filled photonic bandgap fiber. QThPDA3 Proc. CLEO 2003 (2003)

  37. Engeness, T. D. et al. Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. Opt. Express 11, 1175–1196 (2003).

    Article  ADS  Google Scholar 

  38. Benabid, F., Knight, J. C. & Russell, P. St J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    Article  ADS  CAS  Google Scholar 

  39. Benabid, F., Knight, J. C. & Russell, P. St J. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express 10, 1195–1203 (2002).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

There have been numerous contributions to my understanding of this topic from my colleagues at Bath, including Philip Russell, Tim Birks, and others. I would like to thank Blazephotonics for help with the fibre illustrated in Figure 2c. This work was partly funded by the UK EPSRC.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, J. Photonic crystal fibres. Nature 424, 847–851 (2003). https://doi.org/10.1038/nature01940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01940

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing