Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamental principles and applications of natural gas hydrates

Abstract

Natural gas hydrates are solid, non-stoichiometric compounds of small gas molecules and water. They form when the constituents come into contact at low temperature and high pressure. The physical properties of these compounds, most notably that they are non-flowing crystalline solids that are denser than typical fluid hydrocarbons and that the gas molecules they contain are effectively compressed, give rise to numerous applications in the broad areas of energy and climate effects. In particular, they have an important bearing on flow assurance and safety issues in oil and gas pipelines, they offer a largely unexploited means of energy recovery and transportation, and they could play a significant role in past and future climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three common hydrate unit crystal structures.
Figure 2: Hydrate guests versus hydrate cavity size ranges.
Figure 3: The isobaric methane and water phase diagram.
Figure 4: A seafloor slump in the Blake-Bahama ridge shown in both seismic (top) and cartoon (bottom) relief40.
Figure 5: Hypothesized causes of the Late Paleocene Thermal Maximum (LPTM).

Similar content being viewed by others

References

  1. Koen, B. V. Discussion of the Method: Conducting the Engineer's Approach to Problem Solving (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  2. Sloan, E. D. in Clathrate Hydrates of Natural Gases (Marcel Dekker, New York, 1998).

    Google Scholar 

  3. Ripmeester, J. A. Hydrate research – from correlations to a knowledge-based discipline: the importance of structure. Ann. NY Acad Sci. 912, 1–16 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Sloan, E. D. in Hydrate Engineering (Soc. Petrol. Eng., Richardson, TX, 2000).

    Google Scholar 

  5. Makogon, Y. F. Hydrates of Hydrocarbons (Pennwell Books, Tulsa, 1997).

    Google Scholar 

  6. Sloan, E. D. Clathrate hydrate measurements: microscopic, mesoscopic, and macroscopic. J. Chem. Thermo. 35, 41–53 (2003).

    Article  Google Scholar 

  7. Davidson, D. W. in Water: A Comprehensive Treatise (ed. Franks, F.) (Plenum, New York, 1973).

    Google Scholar 

  8. Englezos, P. Clathrate hydrates. Ind. Eng. Chem. Res. 32, 1251–1274 (1993).

    Article  CAS  Google Scholar 

  9. Mao, W. L. et al. Hydrogen clusters in clathrate dydrate. Science 297, 2247–2249 (2002).

    Article  ADS  CAS  Google Scholar 

  10. von Stackelberg, M. Solid gas hydrates. Naturwissenschaften 11-12, 1–22 (1949).

    Google Scholar 

  11. Huo, Z., Hester, K., Miller, K. T. & Sloan, E. D. Methane hydrate non-stoichiometry and phase diagram. Am. Ind. Chem. Eng. J. 49, 1300–1306 (2003).

    Article  CAS  Google Scholar 

  12. Kobayashi, R. & Katz, D. L. Methane hydrate at high pressure. J. Petrol Technol. 2579, 66–70 (1949).

    Article  Google Scholar 

  13. Holder, G. D. & Manganiello, D. J. Hydrate dissociation pressure minima in multicomponent systems. Chem. Eng. Sci. 37, 9–16 (1982).

    Article  CAS  Google Scholar 

  14. Hendriks, E. M., Edmonds, B., Moorwood, R. A. & Szczepanski, R. Hydrate structure stability in simple and mixed dydrates. Fluid Phase Equilibria 117, 293–298 (1996).

    Article  Google Scholar 

  15. Subramanian, S., Kini, R. A., Dec, S. F. & Sloan, E. D. Evidence of structure II hydrate formation from methane+ethane mixtures. Chem. Eng. Sci. 55, 1981–1985 (2000).

    Article  CAS  Google Scholar 

  16. Staykova, D. K., Hansen, T., Salamatin, A. N. & Kuhs, W. F. Kinetic diffraction experiments on the formation of porous gas hydrates. Proc. 4th Int.Conf. Gas Hydrates (2002).

  17. Hester, K. & Sloan, E. D. Structure II hydrates from binary structure I simple guests. Fluid Phase Equilibria (in the press).

  18. Davidson, D. W., Handa, Y. P., Ratcliffe, C. I., Tse, J. S. & Powell, B. M. The ability of small molecules to form clathrate hydrates of structure II. Nature 311, 142–143 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Ripmeester, J. A., Ratcliffe, C. I. & Powell, B. M. A new clathrate hydrate structure. Nature 325, 135–136 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Ballard, A. & Sloan, E. D. The next generation of hydrate prediction: An overview. Proc. 4th Int.Conf. Gas Hydrates (2002).

  21. van der Waals, J. H. & Platteeuw, J. C. Clathrate solutions. Adv. Chem. Phys. 2, 1–58 (1959).

    CAS  Google Scholar 

  22. Mehta, A. P., Hebert, P. B., Cadena, E. R. & Weatherman, J. P. Fulfilling the promise of low-dosage hydrate inhibitors: Journey from academic curiosity to successful field implementation. SPE Prod. Facil. 73–79 (2003).

  23. Kvenvolden, K A. in Methane Hydrates: Resources in the near Future? (Proc. Int. Japan Natl Oil Comp, Chiba City, Japan, 1998)

    Google Scholar 

  24. Milkov, A. V. & Sassen, R. Resource and economic potential of gas hydrates in the northwestern gulf of Mexico. Proc. 4th Int.Conf. Gas Hydrates 111–114 (2002).

  25. Soloviev, V., Ginsburg, G., Telepnevm, E. & Mikhailyk, Y. Cryogeothermy and Natural Gas Hydrates of the Arctic Ocean Sediments (Ministry of Geology USSR, Leningrad, 1987).

    Google Scholar 

  26. Dallimore, S. R. et al. (eds). Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Bull. Geol. Soc. Can. 585 (in the press).

  27. Dallimore, S. R., Collett, T. S. & Uchida, T. Summary of Mallik 21–38 Well GSC Bull. 544 1, 1–10 (1999).

    Google Scholar 

  28. Paull, C. K. & Matsumoto. R. Leg 164 overview. Proc. ODP Sci. Res. 164, 3–10 (2000).

    CAS  Google Scholar 

  29. Moridis, G. et al. Numerical simulation studies of gas production scenarios from hydrate accumulations at the Mallik Site, Mackenzie Delta, Canada. Proc. 4th Int.Conf. Gas Hydrates 239–244 (2002).

  30. Gudmundsson, J. & Borrehaug, A. Frozen hydrate for transport of natural gas in Proc. 2nd Int. Conf. on Natural Gas Hydrates 415–422 (1996).

  31. Nakajima, Y., Takaoki, T., Ohgaki, K. & Ota, S. Use of hydrate pellets for transportation of natural gas – II; Proposition of natural gas transportation in form of hydrate pellets in Proc. 4th Int.Conf. Gas Hydrates 987–990 (2002).

  32. Shirota, H. et al. Measurement of methane hydrate dissociation for application to natural gas storage and transportation. Proc. 4th Int.Conf. Gas Hydrates (2002).

  33. Gudmundsson, J., Andersson, V., Levik, O. I., Mork, M. & Borrehaug, A. Hydrate technology for capturing stranded gas. Ann. NY Acad. Science 912, 403–410.

  34. Kennett, J. P., Cannariato, G., Hendy, I. L. & Behl, R. J. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis (Am. Geophys. Union, Washington DC, 2003).

    Book  Google Scholar 

  35. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest paleocene: simulating first-order effects of massive dissociation of ocean methane hydrate. Geology 25, 259–262 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Dickens, G., O'Neil, J., Rea, D. & Owen, R. Dissociation of oceanic methane hydrates as a cause of the carbon isotope excursion at the end of the Palaeocene. Paleoceanography 10, 965–971 (1995).

    Article  ADS  Google Scholar 

  37. Kaiho, K. et al. Latest palaeocene benthic foramiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography 11, 447–465 (1996).

    Article  ADS  Google Scholar 

  38. Maslin, M. & Thomas, E. The clathrate gun is firing blanks: Evidence from balancing the deglacial global carbon budget. Geophys. Res. Abstr. 5, 12015 (2003).

    Google Scholar 

  39. Dickens, G. R. A methane trigger for rapid warming? Science 299, 1017 (2003).

    Article  CAS  Google Scholar 

  40. Dillon, W. P et al. in Gas Hydrates: Relevance to World Margin Stability and Climate Change (eds Henriet, J.-P & Mienert, J.) 293–302 (Geol. Soc., London, 1998).

    Google Scholar 

  41. Paull, C. K. & Dillon, W. P. (eds) Natural Gas Hydrates: Occurrence, Distribution and Detection (Am. Geophys. Union, Washington DC, 2001).

    Book  Google Scholar 

  42. Bishoi, P. R. & Natarajan, V. Formation and decomposition of gas hydrates. Fluid Phase Equilibria 117, 168–177 (1996).

    Article  Google Scholar 

  43. Sloan, E. D. Jr in Gas Hydrates: Relevance to World Margin Stability and Climate Change (eds Henriet, J.-P & Mienart, J.) 31–40 (Spec. Publ. 137, Geol. Soc, London, 1998).

    Google Scholar 

  44. Dickens, G. R. Methane oxidation during the Late Palaeocene Thermal Maximum. Bull. Soc. Geol. Fr. 171, 37–49 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, E. Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003). https://doi.org/10.1038/nature02135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02135

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing