Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-optical control of light on a silicon chip

Abstract

Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrograph showing the top view of a ring resonator coupled to a waveguide.
Figure 2: Quasi-TM transmission spectrum of a single-coupled ring resonator in the absence of the optical pump.
Figure 3: Temporal response of the probe signal to the pump excitation.

Similar content being viewed by others

References

  1. Luo, C., Joannopoulos, J. D. & Fan, S. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003)

    Article  ADS  Google Scholar 

  2. Krauss, T. F. Planar photonic crystal waveguide devices for integrated optics. Phys. Status Solidi A 197, 688–702 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Yablonovitch, E. Photonic crystals: semiconductors of light. Sci. Am. 285, 47–55 (2001)

    Article  CAS  Google Scholar 

  4. Loncar, M., Doll, T., Vuckovic, J. & Scherer, A. Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 18, 1402–1411 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Wada, K., Luan, H. C., Lim, D. R. C. & Kimerling, L. C. On-chip interconnection beyond semiconductor roadmap: Silicon microphotonics. Proc. SPIE 4870, 437–443 (2002)

    Article  ADS  Google Scholar 

  6. Ibrahim, T. A. et al. All-optical switching in a laterally coupled microring resonator by carrier injection. IEEE Photon. Technol. Lett. 15, 36–38 (2003)

    Article  ADS  Google Scholar 

  7. Van, V. et al. All-optical nonlinear switching in GaAs–AlGaAs microring resonators. IEEE Photon. Technol. Lett. 14, 74–76 (2002)

    Article  ADS  Google Scholar 

  8. Leonard, S. W., van Driel, H. M., Birner, A. & Gösele, U. All-optical ultrafast tuning of two-dimensional silicon photonic crystals via free-carrier injection. Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference. Postconference Technical Digest 159 (Optical Society of America, Washington DC, 2001)

    Google Scholar 

  9. Tan, H. W., van Driel, H. M., Schweizer, S. L., Wehrspohn, R. B. & Gösele, U. Tuning a 2-D silicon photonic crystal using nonlinear optics. Conf. on Laser and Electro-Optics 2004 Vol. IFD2 (Optical Society of America, Washington DC, 2004)

    Google Scholar 

  10. Hache, A. & Bourgeois, M. Ultrafast all-optical switching in a silicon-based photonic crystal. Appl. Phys. Lett. 77, 4089–4091 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Normandin, R., Houghton, D. C. & Simard-Normandin, M. All-optical, silicon based, fiber optic modulator using a near cutoff region. Can. J. Phys. 67, 412–419 (1989)

    Article  ADS  Google Scholar 

  12. Cocorullo, G. et al. Fast infrared light modulation in a-Si:H micro-devices for fiber-to-the-home applications. J. Non-Cryst. Solids 266–269, 1247–1251 (2000)

    Article  ADS  Google Scholar 

  13. Tsang, H. K. et al. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength. Appl. Phys. Lett. 80, 416–418 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Henari, F. Z., Morgenstern, K., Blau, W. J., Karavanskii, V. A. & Dneprovskii, V. S. Third-order optical nonlinearity and all-optical switching in porous silicon. Appl. Phys. Lett. 67, 323–325 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Soref, R. A. & Lorenzo, J. P. Light-by-light modulation in silicon-on-insulator waveguides. Digest of the OSA Integrated and Guided-Wave Optics Topical Meeting 86–89 (Optical Society of America, Washington DC, 1989)

    Google Scholar 

  16. Barrios, C. A., Almeida, V. R. & Lipson, M. Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator. J. Lightwave Technol. 21, 1089–1098 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Soref, R. A. & Bennett, B. R. Kramers-Kronig analysis of electro-optical switching in silicon. Proc. SPIE 704, 32–37 (1987)

    Article  ADS  CAS  Google Scholar 

  18. Zhao, C. Z., Li, G. Z., Liu, E. K., Gao, Y. & Liu, X. D. Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 µm. Appl. Phys. Lett. 67, 2448–2449 (1995)

    Article  ADS  CAS  Google Scholar 

  19. Stepanov, S. & Ruschin, S. Modulation of light by light in silicon-on-insulator waveguides. Appl. Phys. Lett. 83, 5151–5153 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Liu, A. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Verdeyen, J. T. Laser Electronics, 3rd edn 153 (Prentice Hall, Upper Saddle River, NJ, 2000)

    Google Scholar 

  23. Chin, A., Lee, K. Y., Lin, B. C. & Horng, S. Picosecond photoresponse of carriers in Si ion-implanted Si. Appl. Phys. Lett. 69, 653–655 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Meindl, J. D. et al. Interconnect opportunities for gigascale integration. IBM Res. Dev. 46, 245–263 (2002)

    Article  Google Scholar 

  25. Weiss, S. M., Molinari, M. & Fauchet, P. M. Temperature stability for silicon-based photonic band-gap structures. Appl. Phys. Lett. 83, 1980–1982 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Cheben, P., Xu, D.-X., Janz, S. & Delâge, A. Scaling down photonic waveguide devices on the SOI platform. Proc. SPIE 5117, 147–156 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004)

    Article  ADS  Google Scholar 

  28. Pardo, F. et al. Optical MEMS devices for telecom systems. Proc. SPIE 5116, 435–444 (2003)

    Article  ADS  Google Scholar 

  29. Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quant. Electron. 6, 1312–1317 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Cornell Center for Nanoscale Systems, funded by the National Science Foundation (NSF), by the Air Force Office of Scientific Research (AFOSR) and by the CS-WDM programme of the Defense Advanced Research Project Agency. V.R.A. acknowledges sponsorship support provided by the Brazilian Defence Ministry. This work was performed in part at the Cornell Nano-Scale Science & Technology Facility (CNF), a member of the National Nanotechnology Infrastructure Network (NNIN) which is supported by the NSF, its users, Cornell University and Industrial Affiliates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Lipson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, V., Barrios, C., Panepucci, R. et al. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004). https://doi.org/10.1038/nature02921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02921

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing