Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase

Abstract

In higher organisms the formation of the steroid scaffold is catalysed exclusively by the membrane-bound oxidosqualene cyclase (OSC; lanosterol synthase). In a highly selective cyclization reaction OSC forms lanosterol with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. Valuable data on the mechanism of the complex cyclization cascade have been collected during the past 50 years using suicide inhibitors, mutagenesis studies and homology modelling. Nevertheless it is still not fully understood how the enzyme catalyses the reaction1,2. Because of the decisive role of OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins3. Here we present two crystal structures of the human membrane protein OSC: the target protein with an inhibitor that showed cholesterol lowering in vivo opens the way for the structure-based design of new OSC inhibitors. The complex with the reaction product lanosterol gives a clear picture of the way in which the enzyme achieves product specificity in this highly exothermic cyclization reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagram of human OSC.
Figure 2: OSC catalyses the conversion of 2,3-oxidosqualene 1 to lanosterol 2.
Figure 3: Cyclization mechanism in the light of the OSC–lanosterol complex structure.
Figure 4: OSC residues interacting with the inhibitor Ro 48-8071 in the crystal structure.

Similar content being viewed by others

References

  1. Wendt, K. U., Schulz, G. E., Corey, E. J. & Liu, D. R. Enzyme mechanisms for polycyclic triterpene formation. Angew. Chem. Int. Edn Engl. 39, 2812–2833 (2000)

    Article  CAS  Google Scholar 

  2. Hoshino, T. & Sato, T. Squalene-hopene cyclase: catalytic mechanism and substrate recognition. Chem. Commun. (Camb.) 4, 291–301 (2002)

    Article  Google Scholar 

  3. Morand, O. H. et al. Ro 48–8071, a new 2,3-oxidosqualene:lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. J. Lipid Res. 38, 373–390 (1997)

    CAS  PubMed  Google Scholar 

  4. Wendt, K. U., Poralla, K. & Schulz, G. E. Structure and function of a squalene cyclase. Science 277, 1811–1815 (1997)

    Article  CAS  Google Scholar 

  5. Poralla, K. et al. A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19, 157–158 (1994)

    Article  CAS  Google Scholar 

  6. Ruf, A. et al. The monotopic membrane protein human oxidosqualene cyclase is active as monomer. Biochem. Biophys. Res. Commun. 315, 247–254 (2004)

    Article  CAS  Google Scholar 

  7. Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500 (1980)

    Article  ADS  CAS  Google Scholar 

  8. Milla, P. et al. Thiol-modifying inhibitors for understanding squalene cyclase function. Eur. J. Biochem. 269, 2108–2116 (2002)

    Article  CAS  Google Scholar 

  9. Loll, P. J., Picot, D. & Garavito, R. M. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Struct. Biol. 2, 637–643 (1995)

    Article  CAS  Google Scholar 

  10. Wendt, K. U., Lenhart, A. & Schulz, G. E. The structure of the membrane protein squalene-hopene cyclase at 2.0 Å resolution. J. Mol. Biol. 286, 175–187 (1999)

    Article  CAS  Google Scholar 

  11. Corey, E. J., Matsuda, S. P. T., Baker, C. H., Ting, A. Y. & Cheng, H. Molecular cloning of a Schizosaccharomyces pombe cDNA encoding lanosterol synthase and investigation of conserved tryptophan residues. Biochem. Biophys. Res. Commun. 219, 327–331 (1996)

    Article  CAS  Google Scholar 

  12. Zoltewicz, J. A., Maier, N. M. & Fabian, W. M. F. π–cation and π–dipole-stabilizing interactions in a simple model system with cofacial aromatic rings. J. Org. Chem. 63, 4985–4990 (1998)

    Article  CAS  Google Scholar 

  13. Miklis, P. C., Ditchfield, R. & Spencer, T. A. Carbocation–π interaction: computational study of complexation of methyl cation with benzene and comparisons with related systems. J. Am. Chem. Soc. 120, 10482–10489 (1998)

    Article  CAS  Google Scholar 

  14. Gallivan, J. P. & Dougherty, D. A. Cation–π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Schulz-Gasch, T. & Stahl, M. Mechanistic insights into oxidosqualene cyclizations through homology modeling. J. Comput. Chem. 24, 741–753 (2003)

    Article  CAS  Google Scholar 

  16. Reinert, D. J., Balliano, G. & Schulz, G. E. Conversion of squalene to the pentacarbocyclic hopene. Chem. Biol. 11, 121–126 (2004)

    Article  CAS  Google Scholar 

  17. Corey, E. J. et al. Methodology for the preparation of pure recombinant S. cerevisiae lanosterol synthase using a baculovirus expression system. Evidence that oxirane cleavage and A-ring formation are concerted in the biosynthesis of lanosterol from 2,3-oxidosqualene. J. Am. Chem. Soc. 119, 1277–1288 (1997)

    Article  CAS  Google Scholar 

  18. Gandour, R. D. On the importance of orientation in general base catalysis by carboylate. Bioorg. Chem. 10, 169–176 (1981)

    Article  CAS  Google Scholar 

  19. Corey, E. J. et al. Studies on the substrate binding segments and catalytic action of lanosterol synthase. Affinity labeling with carbocations derived from mechanism-based analogs of 2,3-oxidosqualene and site-directed mutagenesis probes. J. Am. Chem. Soc. 119, 1289–1290 (1997)

    Article  CAS  Google Scholar 

  20. Abe, I., Zheng, Y. F. & Prestwich, G. D. Photoaffinity labeling of oxidosqualene cyclase and squalene cyclase by a benzophenone-containing inhibitor. Biochemistry 37, 5779–5784 (1998)

    Article  CAS  Google Scholar 

  21. Brown, G. R. et al. Quinuclidine inhibitors of 2,3-oxidosqualene cyclase–lanosterol synthase: optimization from lipid profiles. J. Med. Chem. 42, 1306–1311 (1999)

    Article  CAS  Google Scholar 

  22. Dehmlow, H. et al. Synthesis and structure–activity studies of novel orally active non-terpenoic 2,3-oxidosqualene cyclase inhibitors. J. Med. Chem. 46, 3354–3370 (2003)

    Article  CAS  Google Scholar 

  23. Jolidon, S., Polak-Wyss, A., Hartmann, P. G. & Guerry, P. in Recent Advances in the Chemistry of Anti-infective Agents (ed. Bentley, P. H.) 223–233 (Royal Soc. Chemistry, Cambridge, 1993)

    Google Scholar 

  24. Lenhart, A., Weihofen, W. A., Pleschke, A. E. & Schulz, G. E. Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug Ro48–8071. Chem. Biol. 9, 639–645 (2002)

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. M. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  26. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  27. Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP's model-building algorithms. I. The main chain. Acta Crystallogr. D 58, 968–975 (2002)

    Article  Google Scholar 

  28. Gerber, P. R. Peptide mechanics: a force field for peptides and proteins working with entire residues as small units. Biopolymers 32, 1003–1017 (1992)

    Article  CAS  Google Scholar 

  29. Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. & Dodson, E. J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999)

    Article  CAS  Google Scholar 

  30. Roversi, P., Blanc, E., Vonrhein, C., Evans, G. & Bricogne, G. Modelling prior distributions of atoms for macromolecular refinement and completion. Acta Crystallogr. D 56, 1316–1323 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the beamline X06SA at the Swiss Light Source (SLS, Switzerland) for support, and C. Vonrhein (Global Phasing Ltd) for an early version of autoBUSTER. We thank all colleagues at Roche Basel for support, and especially O. Morand for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Ruf.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

Data collection and refinement statistics. (DOC 2642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoma, R., Schulz-Gasch, T., D'Arcy, B. et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432, 118–122 (2004). https://doi.org/10.1038/nature02993

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02993

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing