Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal wires for terahertz wave guiding

Abstract

Sources and systems for far-infrared or terahertz (1 THz = 1012 Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy1,2,3,4,5,6,7,8,9,10. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A diagram of the optical set-up for characterizing the propagating electromagnetic mode on a metal wire waveguide.
Figure 2: Spatial mode of the guided wave on a metal wire.
Figure 3: Characteristics of the propagating mode.
Figure 4: The THz endoscope.
Figure 5: Endoscopic measurements.

Similar content being viewed by others

References

  1. Mittleman, D. (ed.) Sensing with Terahertz Radiation (Springer, Heidelberg, 2002)

  2. Smith, P. R., Auston, D. H. & Nuss, M. C. Subpicosecond photoconducting dipole antennas. IEEE J. Quant. Electron. 24, 255–260 (1988)

    Article  ADS  Google Scholar 

  3. van Exter, M. & Grischkowsky, D. Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990)

    Article  ADS  Google Scholar 

  4. Jepsen, P. U., Jacobsen, R. H. & Keiding, S. R. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B 13, 2424–2436 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Mittleman, D. M., Jacobsen, R. H. & Nuss, M. C. T-ray imaging. IEEE J. Select. Top. Quant. Electron. 2, 679–692 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Jacobsen, R. H., Mittleman, D. M. & Nuss, M. C. Chemical recognition of gases and gas mixtures with terahertz waves. Opt. Lett. 21, 2011–2013 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Woodward, R. M., Wallace, V. P., Arnone, D. D., Linfield, E. H. & Pepper, M. Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29, 257–261 (2003)

    Article  CAS  Google Scholar 

  8. Crawley, D. et al. Three-dimensional terahertz pulse imaging of dental tissue. J. Biomed. Opt. 8, 303–307 (2003)

    Article  ADS  Google Scholar 

  9. Kawase, K., Ogawa, Y. & Watanabe, Y. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Wang, S. & Zhang, X.-C. Pulsed terahertz tomography. J. Phys. D 37, R1–R36 (2004)

    Article  ADS  CAS  Google Scholar 

  11. McGowan, R. W., Gallot, G. & Grischkowsky, D. Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides. Opt. Lett. 24, 1431–1433 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Gallot, G., Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Terahertz waveguides. J. Opt. Soc. Am. B 17, 851–863 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Mendis, R. & Grischkowsky, D. Plastic ribbon THz waveguides. J. Appl. Phys. 88, 4449–4451 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Jamison, S. P., McGown, R. W. & Grischkowsky, D. Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber. Appl. Phys. Lett. 76, 1987–1989 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Han, H., Park, H., Cho, M. & Kim, J. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80, 2634–2636 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Goto, M., Quema, A., Takahashi, H., Ono, S. & Sarukura, N. Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43, L317–L319 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Mendis, R. & Grischkowsky, D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Mendis, R. & Grischkowsky, D. THz interconnect with low loss and low group velocity dispersion. IEEE Microwave Wireless Comp. Lett. 11, 444–446 (2001)

    Article  Google Scholar 

  19. Coleman, S. & Grischkowsky, D. A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics. Appl. Phys. Lett. 83, 3656–3658 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Wang, K., Barkan, A. & Mittleman, D. M. Propagation effects in apertureless near-field optical antennas. Appl. Phys. Lett. 84, 305–307 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Rudd, J. V., Zimdars, D. & Warmuth, M. Compact fiber-pigtailed terahertz imaging system. Proc. SPIE 3934, 27–35 (2000)

    Article  ADS  Google Scholar 

  22. Quabis, S., Dorn, R., Eberler, M., Glöckl, O. & Leuchs, G. Focusing light to a tighter spot. Opt. Commun. 179, 1–6 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Marcuvitz, N. Waveguide Handbook (McGraw-Hill, New York, 1951)

    Google Scholar 

  24. Coleman, S. & Grischkowsky, D. Parallel plate THz transmitter. Appl. Phys. Lett. 84, 654–656 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the R. A. Welch Foundation, the National Science Foundation and Advanced Micro Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Mittleman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Mittleman, D. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004). https://doi.org/10.1038/nature03040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing