Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Colloidal nanocrystal synthesis and the organic–inorganic interface

Abstract

Colloidal nanocrystals are solution-grown, nanometre-sized, inorganic particles that are stabilized by a layer of surfactants attached to their surface. The inorganic cores possess useful properties that are controlled by their composition, size and shape, and the surfactant coating ensures that these structures are easy to fabricate and process further into more complex structures. This combination of features makes colloidal nanocrystals attractive and promising building blocks for advanced materials and devices. Chemists are achieving ever more exquisite control over the composition, size, shape, crystal structure and surface properties of nanocrystals, thus setting the stage for fully exploiting the potential of these remarkable materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shape control of colloidal nanocrystals.
Figure 2: Size-distribution focusing.
Figure 3: Monodisperse colloidal nanocrystals synthesized under kinetic size control.
Figure 4: Anisotropic growth of nanocrystals by kinetic shape control and selective adhesion.
Figure 5: Nanocrystals with complex shapes prepared by sequential elimination of a high-energy facet.
Figure 6: Controlled branching of colloidal nanocrystals.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Nanocrystals: building blocks for modern materials design. Endeavour 21, 56–60 ( 1997).

    Article  CAS  Google Scholar 

  2. El-Sayed, M. A. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 ( 2004).

    Article  CAS  Google Scholar 

  3. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 ( 1996).

    Article  CAS  Google Scholar 

  4. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 ( 1998).

    Article  ADS  CAS  Google Scholar 

  5. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 ( 2005).

    Article  ADS  CAS  Google Scholar 

  6. Alivistos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 ( 2005).

    Article  Google Scholar 

  7. Tessler, N., Medvedev, V., Kazes, M., Kan, S. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 ( 2002).

    Article  ADS  Google Scholar 

  8. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 ( 2002).

    Article  CAS  Google Scholar 

  9. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 29, 2425–2427 ( 2002).

    Article  ADS  Google Scholar 

  10. Cushing, B. L., Kolesnichenko, V. L. & O'Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 ( 2004).

    Article  CAS  Google Scholar 

  11. Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2, 145–150 ( 2003).

    Article  ADS  CAS  Google Scholar 

  12. Buffat, Ph. & Borel, J. -P. Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 ( 1976).

    Article  ADS  CAS  Google Scholar 

  13. Mann, S. Molecular recognition in biomineralization. Nature 332, 119–124 ( 1988).

    Article  ADS  CAS  Google Scholar 

  14. Bianconi, P. A., Lin, J. & Strzelecki, A. R. Crystallization of an inorganic phase controlled by a polymer matrix. Nature 349, 315–317 ( 1991).

    Article  ADS  CAS  Google Scholar 

  15. Stuczynski, S. M., Brennan, J. G. & Steigerwald, M. L. Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides. Inorg. Chem. 28, 4431–4432 ( 1989).

    Article  CAS  Google Scholar 

  16. Steigerwald, M. L. Clusters as small solids. Polyhedron 13, 1245–1252 ( 1994).

    Article  CAS  Google Scholar 

  17. Nirmal, M. & Brus, L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407–414 ( 1999).

    Article  CAS  Google Scholar 

  18. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 ( 1996).

    Article  ADS  CAS  Google Scholar 

  19. Steckel, J. S., Coe-sullivan, S., Bulovic, V. & Bawendi, M. G. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862–1866 ( 2003).

    Article  CAS  Google Scholar 

  20. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 ( 1993).

    Article  CAS  Google Scholar 

  21. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 ( 2000).

    Article  ADS  CAS  Google Scholar 

  22. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 ( 2000).

    Article  CAS  Google Scholar 

  23. Katari, J. E. B., Colvin, V. L. & Alivisatos, A. P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98, 4109–4117 ( 1994).

    Article  CAS  Google Scholar 

  24. Kuno, M., Lee, J. K., Dabbousi, B. O., Mikulec, F. V. & Bawendi, M. G. The band edge luminescence of surface modified CdSe nanocrystallites: probing the luminescing state. J. Chem. Phys. 106, 9869–9882 ( 1997).

    Article  ADS  CAS  Google Scholar 

  25. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 ( 1997).

    Article  ADS  CAS  Google Scholar 

  26. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 ( 1998).

    Article  ADS  CAS  Google Scholar 

  27. Redl, F. X., Cho, K. -S., Murray, C. B. & O'Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 ( 2003).

    Article  ADS  CAS  Google Scholar 

  28. Vossmeyer, T. et al. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98, 7665–7673 ( 1994).

    Article  CAS  Google Scholar 

  29. Murray, C. B., Sun, S., Doyle, H. & Betley, T. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. Mater. Res. Soc. Bull. 26, 985–991 ( 2001).

    Article  CAS  Google Scholar 

  30. Reiss, H. The growth of uniform colloidal dispersions. J. Chem. Phys. 19, 482–487 ( 1951).

    Article  ADS  CAS  Google Scholar 

  31. Peng, X., Wickham, J. & Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: focusing of size distributions. J. Am. Chem. Soc. 120, 5343–5344 ( 1998).

    Article  CAS  Google Scholar 

  32. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 ( 2000).

    Article  ADS  CAS  Google Scholar 

  33. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 ( 2001).

    Article  ADS  CAS  Google Scholar 

  34. Puntes, V. F., Zanchet, D., Erdonmez, C. K. & Alivisatos, A. P. Synthesis of hcp-Co nanodisks. J. Am. Chem. Soc. 124, 12874–12880 ( 2002).

    Article  CAS  Google Scholar 

  35. Jun, Y. -W. et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125, 15981–15985 ( 2003).

    Article  CAS  Google Scholar 

  36. Puzder, A. et al. The effect of organic ligand binding on the growth of CdSe nanoparticles probed by ab initio calculations. Nano Lett. 4, 2361–2365 ( 2004).

    Article  ADS  CAS  Google Scholar 

  37. Manna, L., Wang, L. W., Cingolani, R. & Alivisatos, A. P. First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite cdse: a model system for studying the anisotropic growth of CdSe nanocrystals. J. Phys. Chem. B 109, 6183–6192 ( 2005).

    Article  CAS  Google Scholar 

  38. Yu, W. W., Wang, Y. A. & Peng, X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300–4308 ( 2003).

    Article  CAS  Google Scholar 

  39. Alivisatos, A. P. Naturally aligned nanocrystals. Science 289, 736–737 ( 2000).

    Article  CAS  Google Scholar 

  40. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 ( 1999).

    Article  ADS  CAS  Google Scholar 

  41. Penn, R. L. & Banfield, J. F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2 . Am. Mineral. 83, 1077–1082 ( 1998).

    Article  ADS  CAS  Google Scholar 

  42. Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188–1191 ( 2002).

    Article  CAS  Google Scholar 

  43. Yu, J. H. et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 ( 2005).

    Article  CAS  Google Scholar 

  44. Adachi, M. et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943–14949 ( 2004).

    Article  CAS  Google Scholar 

  45. Banfield, J. F. & Penn, R. L. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 ( 1998).

    Article  ADS  Google Scholar 

  46. Wang, D. & Lieber, C. M. Nanocrystals branch out. Nature Mater. 2, 355–356 ( 2003).

    Article  ADS  CAS  Google Scholar 

  47. Yan, H., He, R., Pham, J. & Yang, P. Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv. Mater. 15, 402–405 ( 2003).

    Article  CAS  Google Scholar 

  48. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod branched inorganic nanocrystals. Nature Mater. 2, 382–385 ( 2003).

    Article  ADS  CAS  Google Scholar 

  49. Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15, 459–463 ( 2003).

    Article  CAS  Google Scholar 

  50. Yeh, C. Y., Lu, Z. W., Froyen, S. & Zunger, A. Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 ( 1992).

    Article  ADS  CAS  Google Scholar 

  51. Milliron, D. J. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 ( 2004).

    Article  ADS  CAS  Google Scholar 

  52. Li, L. -S., Walda, J., Manna, L. & Alivisatos, A. P. Semiconductor nanorod liquid crystals. Nano Lett. 2, 558–560 ( 2002).

    ADS  Google Scholar 

  53. Chan, E. M., Mathies, R. A. & Alivisatos, A. P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 3, 199–201 ( 2003).

    Article  ADS  CAS  Google Scholar 

  54. Collier, C. P., Vossmeyer, T. & Heath, J. R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 ( 1998).

    Article  ADS  CAS  Google Scholar 

  55. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 ( 2000).

    Article  ADS  CAS  Google Scholar 

  56. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 ( 1996).

    Article  ADS  CAS  Google Scholar 

  57. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 ( 1996).

    Article  ADS  CAS  Google Scholar 

  58. Fu, A. et al. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 126, 10832–10833 ( 2004).

    Article  CAS  Google Scholar 

  59. Yu, H. et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5, 379–382 ( 2005).

    Article  ADS  CAS  Google Scholar 

  60. Gu, H., Zheng, R., Zhang, X. & Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 ( 2004).

    Article  CAS  Google Scholar 

  61. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 ( 2004).

    Article  ADS  CAS  Google Scholar 

  62. Kudera, S. et al. Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano. Lett. 5, 445–449 ( 2005).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy through the Molecular Foundry at the Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paul Alivisatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Alivisatos, A. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005). https://doi.org/10.1038/nature04165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04165

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing